*In the German system, “mit Auszeichnung bestanden (summa cum laude)” is the maximum grade of the PhD, which is obtained only when all evaluators give the maximum grade to both the thesis and the presentation.
**In the German system, grades range from 5.0 (lowest grade) to 1.0 (highest grade).
***In the Spanish system, grades range from 0 (lowest grade) to 10 (highest grade).
A $p$-adic Descartes solver: the Strassman solverarXiv:2203.07016
Journal papers
2024
Probabilistic bounds on best rank-one approximation ratioarXiv:2201.02191
Kh. Kozhasov and J. Tonelli-Cueto. Probabilistic bounds on best rank-one approximation ratio, Linear and Multilinear Algebra, 2024. On-line. DOI 10.1080/03081087.2024.2304146
2023
Generalized Perron Roots and Solvability of the Absolute Value EquationarXiv:1912.08157
M. Radons and J. Tonelli-Cueto. Generalized Perron Roots and Solvability of the Absolute Value Equation, SIAM Journal on Matrix Analysis and Applications, 44(4):1645-1666, 2023. DOI 10.1137/22M1517184
Condition Numbers for the Cube. I: Univariate Polynomials and HypersurfacesarXiv:2006.04423
J. Tonelli-Cueto and E. Tsigaridas. Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces, Journal of Symbolic Computation, 115:142-173, 2023. First on-line: August 2022. DOI 10.1016/j.jsc.2022.08.013
Journal version of Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces in the Special Issue of ISSAC'20.
2022
Functional norms, condition numbers and numerical algorithms in algebraic geometry arXiv:2102.11727 OA paper
F. Cucker, A.A. Ergür and J. Tonelli-Cueto. Functional norms, condition numbers and numerical algorithms in algebraic geometry, Forum of Mathematics, Sigma, 10:e103, 2022. DOI 10.1017/fms.2022.89
A Geometric Summation of the Geometric Serieshal-03779492
On the Complexity of the Plantinga-Vegter AlgorithmarXiv:2004.06879
F. Cucker, A.A. Ergür and J. Tonelli-Cueto. On the Complexity of the Plantinga-Vegter Algorithm, Discrete & Computational Geometry, 68(3):664–708, 2022. DOI 10.1007/s00454-022-00403-x[SharedIt LINK]
Journal version of Plantinga-Vegter algorithm takes average polynomial time.
2021
Computing the Homology of Semialgebraic Sets. II: General FormulasarXiv:1903.10710
P. Bürgisser, F. Cucker and J. Tonelli-Cueto. Computing the Homology of Semialgebraic Sets. II: General Formulas, Foundations of Computational Mathematics, 21(5):1279–1316, 2021. First on-line: January 2021. DOI 10.1007/s10208-020-09483-8[SharedIt LINK]
2020
Computing the Homology of Semialgebraic Sets. I: Lax FormulasarXiv:1807.06435
P. Bürgisser, F. Cucker and J. Tonelli-Cueto. Computing the Homology of Semialgebraic Sets. I: Lax Formulas, Foundations of Computational Mathematics, 20(1):71-119, 2020. First on-line: May 2019. DOI 10.1007/s10208-019-09418-y[SharedIt LINK]
2019
On the Number of Real Zeros of Random Fewnomials
arXiv:1811.09425
P. Bürgisser, A.A. Ergür and J. Tonelli-Cueto. On the Number of Real Zeros of Random Fewnomials, SIAM Journal on Applied Algebra and Geometry, 3(4):721–732, 2019. DOI 10.1137/18M1228682
Conference papers
2022
Beyond Worst-Case Analysis for Root Isolation AlgorithmsarXiv:2202.06428v3
A.A. Ergür, J. Tonelli-Cueto and E. Tsigaridas. Beyond Worst-Case Analysis for Root Isolation Algorithms. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC'22, pages 139–148. ACM, 2022. DOI 10.1145/3476446.3535475[Author-Ized LINK]
On the Error of Random Sampling: Uniformly Distributed Random Points on Parametric CurvesarXiv:2203.02832v2
A. Chalkis, Ch. Katsamaki and J. Tonelli-Cueto. On the Error of Random Sampling: Uniformly Distributed Random Points on Parametric Curves. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC'22, pages 273–282. ACM, 2022. DOI 10.1145/3476446.3536190[Author-Ized LINK]
J.G. Suchen and J. Tonelli-Cueto. Ultrametric Smale's $\alpha$-theory, ACM Communications in Computer Algebra, 56(2):56-59, June 2022. DOI 10.1145/3572867.3572875[Author-Ized LINK]
Generalized Perron roots and solvability of the absolute value equationhal-03739462
M. Radons and J. Tonelli-Cueto. Generalized Perron roots and solvability of the absolute value equation. In L.F. Tabera Alonso (ed.), Discrete Mathematics Days 2022, pages 237-242. Editorial Universidad de Cantabria, 2022. DOI 10.22429/Euc2022.016
2020
Condition Numbers for the Cube. I: Univariate Polynomials and HypersurfacesarXiv:2006.04423v1
J. Tonelli-Cueto and E. Tsigaridas. Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces. In Proceedings of the 2020 International Symposium on Symbolic and Algebraic Computation, ISSAC'20, pages 434-441. ACM, 2020. DOI 10.1145/3373207.3404054[Author-Ized LINK]
2019
Plantinga-Vegter algorithm takes average polynomial timearXiv:1901.09234
F. Cucker, A.A. Ergür and J. Tonelli-Cueto. Plantinga-Vegter Algorithm takes Average Polynomial Time. In Proceedings of the 2019 International Symposium on Symbolic and Algebraic Computation, ISSAC'19, pages 114-121. ACM, 2019. DOI 10.1145/3326229.3326252[Author-Ized LINK]
Other
2019
Condition and Homology in Semialgebraic Geometrydoctoral thesis
J. Tonelli-Cueto. Condition and Homology in Semialgebraic Geometry. PhD thesis, Technsiche Universität Berlin, DepositOnce Repository, December 2019. DOI 10.14279/depositonce-9453
Member of the Scientific Committee and of the Poster Committee
Description:
Conference of young mathematicians
Scientific Committee:
Adrián Hinojosa-Calleja (Coordinator), Marta de León-Contreras, Consuelo Parreño-Torres, Tom&acuete;s Sanz-Perela, Victoria Ponce-Bobadilla, Erik Sarrión-Pedralva, Josué Tonelli-Cueto and Juan Carlos Cortés López
Poster Committee:
Clara Burgos Simón, Ángela Capel, David Martínez, Judit Muñoz-Matute, Eva Primo Tárraga, Josué Tonelli-Cueto and Erik Sarrión-Pedralva
Semi... ¿qué? Las múltiples formas de lo semialgebraico y cómo determinarlasArticle
J. Tonelli-Cueto. Semi... ¿qué? Las múltiples formas de lo semialgebraico y cómo determinarlas (Spanish) [Semi... what? The multiple shapes of the semialgebraic and how to determine them]. In Libro de Resúmenes de Divulga NextGen I (26, 27 y 28 de Mayo de 2021), pages 42-43. Zenodo, 2021. DOI 10.5281/zenodo.4718329
J. Tonelli-Cueto. Emmy Noether, un retrato alfabético (Spanish) [Emmy Noether, an alphabetic portrait], Blog “mujeres con ciencia”, October 2020. Translation in my blog.
Ana Navarro Quiles, Eva Primo Tárraga, Clara Burgos Simón, David Martínez Rodríguez, Elena López Navarro, Alberto Espuny Díaz, Miguel Reula Martín, José Alberto Conejero Casares and Patricio Almirón Cuadros
The levels given follow the Common European Framework
of Reference for Languages: Learning, Teaching, Assessment. In this framework, the levels are, from lowest to highest, A1, A2, B1, B2, C1 and C2. The B2 level indicates Vantage Independent Use, the C1 level Effective Operational Proficiency of the language and the C2 level Mastery of it.
References
Peter Bürgisser, pbuerg_AT_math.tu-berlin . de, Technische Universität Berlin.
Felipe Cucker, macucker_AT_cityu.edu . hk, CityU Hong Kong.
Alperen Ali Ergür, aergur_AT_cs.cmu . edu, Carnegie Mellon University.