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Complexity
of numerical algorithms



Numerical algorithms

What do characterize numerical algorithms?

• Inexact input data
• Approximate operations with numbers

Which problems arise when working with numerical algorithms?

• Behaviour is not uniform
• Some inputs (ill-posed) are intractable

Why do we want numerical algorithms?

• More stable, i.e., robust with respect errors
• They can be faster in practice
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Complexity: Condition numbers I

ALL INPUTS ARE EQUAL
BUT SOME INPUTS ARE MORE EQUAL

THAN OTHERS

Condition number

• Measure of the numerical sensitivity
• The bigger the worse!
• It depends on the metric!

• Controls the complexity. This is what happens in:
• Linear algebra
• Linear programming and optimization
• Algebraic geometry
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Complexity: Condition numbers II

Details in the Book!

…and some other papers! 4



Uniform complexity of numerical algorithms I

Worst-case complexity analysis:
What is the worst running time?

Average complexity analysis:
What is the expectation of the running time on a random
input?

Smoothed complexity analysis: (Spielman, Teng; 2002)
What is the worst running time aǌter perturbing the input with
a random perturbation (with weight σ)?

Smoothed lies between worst-case and average complexity

• σ → 0: We recover worst-case complexity
• σ → ∞: We recover average analysis
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Uniform complexity of numerical algorithms II

Worst-case complexity analysis:
Infinite for numerical algorithms!

Average complexity analysis: (Goldstein & von Neumann, Demmel,
Smale)

It allows to derive complexity estimates that do not depend
on the condition number

Smoothed complexity analysis:
Explains the success of numerical algorithms in practice
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The long-term goal



Better algorithms in real numerical algebraic geometry!

Algorithms are faster and simpler on the cube,
but geometry is easier on the sphere!

Example:
Covering the cube efficiently is easy,
but covering the sphere is not so easy.
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Cubes are better for subdivisions!
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Geometry on the sphere = Euclidean norm ‖x‖ :=
√∑

i |xi|2
Geometry on the cube = ∞-norm ‖x‖∞ := maxi |xi|

Goal:

Geometry on the sphere → Geometry on the cube
Euclidean norm → ∞-norm

Warning: The∞-norm does not come from an inner product!

Hopes:

• Better complexity estimates
• Faster algorithms
• Better understanding of subdivision methods

Antecedent exploring other norms: (Cucker, Ergür, T.C.; SIAM AG’19)
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Our local achievement

• Condition theory for hypersurfaces in the cube
• Gaussian polynomials
• Polynomials with restricted support (up to assumptions)

We showcase our results with:

• Separation bounds for roots of univariate polynomials in (0, 1)
• Plantinga-Vegter algorithm
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Let’s see some details!
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Polynomial inequalities
and condition



Some notation

Pn,d : Polynomials of degree ≤ d in the variables X1, . . . , Xn
Bn : Euclidean ball in Rn

In : Unit∞-ball ([−1, 1]n) in Rn

f =
∑

α fαXα ∈ Pn,d, x ∈ Rn

‖f‖W : Weyl norm, given by
√∑

α

( d
α,d−|α|

)−1/2
fα

‖f‖1 : 1-norm, given by
∑

α |fα|
f(x) : Evaluation of f at x
∇f : Formal gradient of f, element of Pn

n,d−1
∇xf : Gradient vector of f at x

12



Idea: Controlling size of evaluation

Proposition
Let f ∈ Pn,d and x ∈ Bn. Then |f(x)| ≤ ‖f‖W‖(1, x)‖d.

Proof.

|f(x)| =
∣∣∣∣∣
〈((

d
α,d− |α|

)−1/2
fα

)
,

((
d

α,d− |α|

)1/2
xα

)〉∣∣∣∣∣
≤

∥∥∥∥∥
((

d
α,d− |α|

)−1/2
fα

)∥∥∥∥∥
∥∥∥∥∥
((

d
α,d− |α|

)1/2
xα

)∥∥∥∥∥
= ‖f‖W

√∑
α

(
d

α,d− |α|

)
x2α

= ‖f‖W
√
(1+

∑
i

x2i )d

= ‖f‖W‖(1, x)‖d
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Idea: Controlling size of evaluation

Proposition
Let f ∈ Pn,d, x ∈ Bq,n and p,q ≥ 1 such that 1/p+ 1/q = 1. Then
|f(x)| ≤ ‖f‖W,p‖(1, x)‖dq.

Proof.

|f(x)| =

∣∣∣∣∣
〈((

d
α,d− |α|

)1/p−1
fα

)
,

((
d

α,d− |α|

)1/q
xα

)〉∣∣∣∣∣
≤

∥∥∥∥∥
((

d
α,d− |α|

)1/p−1
fα

)∥∥∥∥∥
p

∥∥∥∥∥
((

d
α,d− |α|

)1/q
xα

)∥∥∥∥∥
q

= ‖f‖W,p q

√∑
α

(
d

α,d− |α|

)
xqα

= ‖f‖W,p q

√
(1+

∑
i

xqi )d

= ‖f‖W,p‖(1, x)‖dq
13



Idea: Controlling size of evaluation

Taking p = 1 and q = ∞…

Proposition
Let f ∈ Pn,d, x ∈ In. Then |f(x)| ≤ ‖f‖1.

This, by duality, justifies our use of the 1-norm for polynomials when
we use the∞-norm for points.
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In a similar way…

f ∈ Pn,d, x ∈ In, v ∈ Rn

• Control of the derivative I:

‖〈∇f, v〉‖1 ≤ d‖f‖1‖v‖∞

• Control of the derivative II:

‖∇xf‖1 ≤ d‖f‖1

• Lipschitz properties for f and its derivatives
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Local condition number

Definition (T.C., Tsigaridas; ISSAC’20)

Let f ∈ Pn,d and x ∈ In, the local condition number of f at x is the
quantity

C(f, x) := ‖f‖1
max

{
|f(x)|, 1d‖∇xf‖1

} .
Important observation: C(f, x) = ∞ iff x is a singular zero of f
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Properties of the local condition number

• Regularity inequality
either |f(x)|/‖f‖1 ≥ 1/C(f, x) or ‖∇xf‖1/(d‖f‖1) ≥ 1/C(f, x).

• 1st Lipschitz property
f 7→ ‖f‖1/C(f, x) is 1-Lipschitz

• 2nd Lipschitz property
In 3 x 7→ 1/C(f, x) is d-Lipschitz

• Condition Number Theorem

‖f‖1/dist1(f,Σx) ≤ C(f, x) ≤ 2d ‖f‖1/dist1(f,Σx)

where Σx := {g ∈ Pn,d | x is a singular zero of f}
• Higher Derivative Estimate. If C(f, x)|f(x)|/‖f‖1 < 1, then

γ(f, x) ≤ 1
2 (d− 1)

√
nC(f, x).

where γ(f, x) is Smale’s γ

All we need for complexity analyses!
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Application 1:
Separation of roots



Separation of roots

Recall...
∆α(f) := dist(α, f−1(0) \ {α})

Theorem (T.C., Tsigaridas; ISSAC’20)
Let f ∈ P1,d. Then, for every complex α ∈ f−1(0) such that
dist(α, I) ≤ 1/(3(d− 1)C(f)),

∆α(f) ≥
1

16(d− 1)C(f)

where
C(f) := sup

x∈I
C(f, x).

I.e., the condition number controls the separation of the roots
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Probabilistic results



Randomness model I: Two properties

(SG) We call a random variable x subgaussian, if there exist a K > 0
such that for all t ≥ K,

P(|x| > t) ≤ 2 exp(−t2/K2).

The smallest such K is the subgaussian constant of x.
(AC) A random variable x has the anti-concentration property, if there

exists a ρ > 0, such that for all ε > 0,

max{P (|x− u| ≤ ε) | u ∈ R} ≤ 2ρε.

The smallest such ρ is the anti-concentration constant of x.
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Randomness model II: Zintzo random polynomials I

Definition

Let M ⊆ Nn be a finite set such that 0, e1, . . . , en ∈ M. A zintzo random
polynomial supported on M is a random polynomial

f =
∑
α∈M

fαXα ∈ Pn,d

such that the coefficients fα  are independent subgaussian random 
variables with the anti-concentration property.

Note: ‘zintzo’, from Basque, means honest, upright, righteous.
Observation: No scaling in the coefficients, as it happens with dobro 
random polynomials (Cucker, Ergür, TC; ISSAC’19)
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Randomness model II: Zintzo random polynomials II

For f a zintzo random polynomial, we define:

1. the subgaussian constant of f which is given by

Kf :=
∑

α∈M
Kα, (5.1)

where Kα is the subgaussian constant of fα, and
2. the anti-concentration constants of f which is given by

ρf := n+1
√
ρ0ρe1 · · · ρen , (5.2)

where ρ0 is the anti-concentration constant of f0 and for each i,
ρei is the anti-concentration constant of fei .

Kf and ρf will control the complexity estimates
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Randomness model II: Zintzo random polynomials III

Let M ⊆ Nn be such that it contains 0, e1, . . . , en. These are two
important cases of zintzo random polynomials:

G A Gaussian polynomial supported on M is a zintzo random
polynomial f supported on M, the coefficients of which are i.i.d.
Gaussian random variables.
In this case, ρf = 1/

√
2π and Kf ≤ |M|.

U A uniform random polynomial supported on M is a zintzo
random polynomial f supported on M, the coefficients of which
are i.i.d. uniform random variables on [−1, 1].
In this case, ρf = 1/2 and Kf ≤ |M|.
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Randomness model III: Smoothed case

Proposition

Let f be a zintzo random polynomial supported on M, f ∈ Pn,d a
polynomial supported on M, and σ > 0. Then,

fσ := f+ σ‖f‖1f

is a zintzo random polynomial supported on M such that

Kfσ ≤ ‖f‖1(1+ σKf) and ρfσ ≤ ρf/(σ‖f‖1).

In particular,
Kfσρfσ = (Kf + 1/σ)ρf.

I.e., the smoothed case is included in our average case!
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Probabilistic bound

Theorem (T.C., Tsigaridas; ISSAC’20)

Let f ∈ Pn,d a zintzo random polynomial supported on M. Then for all
t ≥ e,

P(C(f, x) ≥ t) ≤
√
ndn|M| (8Kfρf)n+1

ln
n+1
2 t

tn+1 .

Corollary (T.C., Tsigaridas; ISSAC’20)

Let f ∈ Pn,d be a zintzo random polynomial supported on M. Then, for
all t > 2e,

P(C(f) ≥ t) ≤ 1
4
√
nd2n|M| (64Kfρf)n+1

ln
n+1
2 t
t .
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Application 2:
Plantinga-Vegter algorithm



Setting

What do we have?

• An implicit curve C inside [−1, 1]2
given by a C1 function f : [−1, 1]2 → R

• Interval approximations □f of f and □∇f of ∇f

What do we want?

• Piecewise-linear approximation L of C in [−1, 1]2such that
([−1, 1]2, C) and ([−1, 1]2, L) are isotopic

Any assumptions?

• C smooth
• C Intersects the boundary of [−1, 1]2 transversely
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Plantinga-Vegter algorithm for curves I

Algorithm: PV Algorithm for curves (Plantinga, Vegter; 2004)
Input: f : R2 → R
with interval approximations □[f] and 〈□[∇f],□[∇f]〉

Subdivision:
Starting with the trivial subdivision S := {[−1, 1]n}, repeatedly
subdivide each J ∈ S into 4 squares until for all J ∈ S ,

0 /∈ □f(J) or 0 /∈ 〈□∇f(J),□∇f(J)〉

Construction:
Construct piecewise-linear curve L
joining the midpoints of “small” edges of each J ∈ S with oposite
f-signs at their vertices

Output: Piecewise-linear approximation L of C = f−1(0) ∩ [−a,a]2
isotopic to it 26



Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm in higher dimensions

1. Plantinga-Vegter algorithm can be generalized to produce
isotopic approximations of surfaces (Plantinga, Vegter; 2004)
This is really why is called Plantinga-Vegter!
Very efficient in practice

2. The subdivision method can be generalized to higher
dimensions (Burr, Gao, Tsigaridas; ISSAC2017)

We will focus on the later, since…

complexity of the algorithm is mainly that of the subdivision part

We will mainly count the number of subdivisions,
because…

cost(subdivision algorithm) ∼ #(subdivisions) · cost(evaluations)
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Subdivision in Plantinga-Vegter algorithm

Algorithm: Subdivision of PV Algorithm (Burr, Gao, Tsigaridas; ISSAC’17)
Input: f : Rn → R
with interval approximations □[hf] and □[h′∇f]
for some functions h,h′ : Rn → (0,∞)

Starting with the trivial subdivision S := {[−a,a]n}, repeatedly
subdivide each J ∈ S into 2n cubes until the condition

Cf(J) : 0 /∈ □[hf](J) or 0 /∈ 〈□[h′∇f],□[h′∇f]〉

holds for all J ∈ S

Output: Subdivision S ⊆ In of [−a,a]n
such that for all J ∈ S , Cf(J) is true

h,h′ depend on the setting and the interval arithmetic one uses
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The complexity estimate

We had…

Theorem (Cucker, Ergür, T.C.; ISSAC’19)
Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
The average number of boxes of the final subdivision of PV
algorithm on input f is at most

d n2+3n
2 2

n2+16n log(n)
2 (c1c2Kρ)n+1.

We get…

Theorem (T.C., Tsigaridas; ISSAC’20)
Let f ∈ Pn,d be a zintzo random polynomial supported on M. The
average number of boxes of the final subdivision of PV algorithm on
input f is at most

n 3
2d2n|M|

(
80
√
n(n+ 1)Kfρf

)n+1
.
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An specific bound

Corollary (T.C., Tsigaridas; ISSAC’20)
Let f ∈ Pn,d be a random polynomial supported on M. The average
number of boxes of the final subdivision of PV algorithm on input f
is at most

n 3
2

(
40
√
n(n+ 1)

)n+1
d2n|M|n+2

if f is Gaussian or uniform.
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Bere arretagatik eskerrik asko!
Merci pour votre attention!

Galderak?
Des questions?
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