Polynomial Systems, Real Zeros and Condition Numbers

JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING
Josué Tonelli-Cueto
Johns Hopkins University
josue.tonelli.cueto@bizkaia.eu

Elias Tsigaridas
Inria Paris \& IMJ-PRG
elias.tsigaridas@inria.fr

Condition Number

Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a real polynomial system in n variables with f_{k} of degree at most d_{k}, its condition number is
$C(f):=\sup _{x \in[1,1,1]} \frac{\|f\|}{\max \left\{\|f(x)\|_{\infty},\left\|D_{x} f^{-1} \Delta\right\|_{\infty}^{-1}, \infty\right.}$
where $\|f\|:=\max _{k} \sum_{\alpha}\left|f_{k, \alpha}\right|$ is the 1 -norm, $\left\|\|_{\infty}\right.$ the ∞-norm, $\left\|\|_{\infty, \infty}\right.$ the matrix norm induced by the ∞-norm and Δ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

Meaning? Measures numerical sensitivity f the real zeros of f with respect perturbations of f of the real zeros ohen f has a singular zero in $[-1,1]^{n}$
it becomes ∞ when f has a singular zero in $-1,1$

Geometric Interpretation

Discriminant Variety:
$\Sigma:=\left\{g \mid\right.$ there is $x \in[-1,1]^{n}$ s.t. $\left.g(x)=0, \operatorname{det} D_{x} g=0\right\}$.

Condition Number Theorem

Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a real polynomial system in n variables with f_{i} of degree at most d_{i}, then

$$
\frac{\|f\|}{\operatorname{dist}(f, \Sigma)} \leq \mathrm{C}(f) \leq\left(1+\max _{k} d_{k}\right) \frac{\|f\|}{\operatorname{dist}(f, \Sigma)}
$$

where dist is the distance induced by || ||.

A New Real Phenomenon!

MAIN Theorem (T.-C., Ts.; '24 +)
Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a real polynomial system in variables. Then
$\# \mathcal{Z}\left(f,[-1,1]^{n}\right) \leq O(\log \mathbf{D} \max \{n \log \mathbf{D}, \log \mathrm{C}(f)\})^{n}$
where \mathbf{D} is the maximum degree.

Corollary

Well-posed Real Polynomial Systems
have Few Real Zeros

Observation!

If $\# \mathcal{Z}\left(f,[-1,1]^{n}\right) \geq \Omega(\mathcal{D})$, then $\mathrm{C}(f) \geq 2^{\Omega\left(\frac{\mathcal{D}}{\operatorname{logD}}\right)}$

Example: Hermitian Matrices

The Question: Given an Hermitian matrix $A \in \mathbb{C}^{d \times d}$, its characteristic polynomial

$$
\chi_{A}:=\operatorname{det}(X \mathbb{X}-\mathrm{A})
$$

is real-rooted. Is it recommendable to compute the characteristic polynomial of A and then its real roots to obtain the eigenvalues of A ?

Numerical Analyst's Answer:

NO!

Our Answer: Effectively no, because, by the theorem below, the characteristic polynomial is ill-posed with respect the perturbation of its coefficients

Theorem (Moroz, 22) (T.-C., Ts.; '24 +)

Let $A \in \mathbb{C}^{d \times d}$ be a Hermitian matrix, then, for some absolute constant c,

What are Polynomial Systems?

Polynomial systems are systems of equations where each equation is the results of adding and multiplying numbers and variables.

One polynomial system

$$
\left\{\begin{aligned}
1.45 X^{3}+5.23 X Y-1.23 Z^{7} & =0 \\
2.13 X Y^{2}+7.23 Y Z^{2} & =0 \\
0.12 X Z-1.53 Y^{2}+6.45 X Y Z & =0
\end{aligned}\right.
$$

Another polynomial system
$\left\{\begin{array}{l}7.15 \mathrm{X}^{2}+2.13 X Y-1.23 \mathrm{Y}^{2}+4.34 \mathrm{X}-2.34 \mathrm{Y}+7.14=0 \\ -1.5 \mathrm{X}^{2}\end{array}\right.$ $\left\{-1.35 X^{2}+4.23 X Y+9.45 Y^{2}-2.13 X+1.24 Y-13.14=0\right.$

Probabilistic Consequences

Prob. Theorem (Ver. A) (T.-C., Ts.; '24 +)

Let $\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{n}\right)$ be a random real polynomial system in n variables whose coefficients are i.i.d. uniform in $[-1,1]$. Then for $\ell \geq 1$,
$\mathbb{E}_{\mathbb{f}} \# \mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}^{n}\right)^{\ell} \leq O\left(n \ell \log ^{2} \mathbf{D}\right)^{n \ell}$
where $\mathcal{Z}\left(\mathfrak{f}, \mathbb{R}^{n}\right)$ is the set of real zeros of $\mathfrak{f}_{1}=\cdots=\mathfrak{f}_{n}=0$, and \mathbf{D} is the maximum degree.

Prob. Theorem (Ver. B) (T.-C., Ts.; '24 +)
Let $\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \tilde{f}_{n}\right)$ be a random real polynomial system in n variables whose coefficients are independent and uniformly distributed in $[-1,1]$. Then there is an absolute constant C such that, for $t \geq 1$,

$$
\mathbb{P}_{\mathfrak{f}}\left(\sqrt[n]{\# \mathcal{Z}\left(\mathfrak{f}, \mathbb{R}^{n}\right)} \geq t\right) \leq \exp \left(\frac{-t}{\mathrm{Cn} \log ^{2} \mathbf{D}}\right)
$$

where $\mathcal{Z}_{r}\left(\mathfrak{f}, \mathbb{R}^{n}\right)$ is the set of real zeros of $\tilde{f}_{1}=$ and \mathbf{D} is the maximum degree.

Corollary:

Fewnomial systems with many zeros
ARe very improbable

More generally...
wile range of probabilistic assumptions

Why these bounds?

Condition numbers have nice probabilistic properties!

Prob. Theorem (T.-C., Ts.; '24 +)

Let $\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{n}\right)$ be a random real polynomial system in n variables whose coefficients are independent and uniformly distributed in $[-1,1]$. Then for $\ell \geq 1$,
$\mathbb{E}_{\mathfrak{f}} \log ^{\ell} \mathrm{C}(\mathfrak{f}) \leq O(n \ell \log \mathbf{D})^{n \ell}$
where $\mathcal{Z}\left(\mathfrak{f}, \mathbb{R}^{n}\right)$ is the set of real zeros of $\mathfrak{f}_{1}=$
and \mathbf{D} is the maximum degree.
Other Valid Distributions:

- Exponential.
- Gaussian.
- Integer variables uniformly distributed on an interval.

Evaluation Reduction If
$C(f)$ is large,
then
$\mathbb{P}(|f(x)|$ is small $)$ is large, where $x \in[-1,1]^{n}$ random.

And where do these appear?

Polynomial systems appear in many applications, since they are among non-linear equations the most simple ones.

Biochemical Reaction Networks

How many equilibria
does a biochemical reaction network have?
Counting Solutions of a Polynomial System!

Statistics:

How can we compute the parameters
of a distribution out of sample values?
Solving a Polynomial System!

Algorithmic Consequences

Fully constructible Proof!
Alg. Theorem (T.-C., Ts.; '24 +)
There is a explicit partition
\mathcal{B}
of $[-1,1]^{n}$ into
$O(\log \mathbf{D})^{n}$
boxes such that for all real polynomial system
$f=\left(f_{1}, \ldots, f_{n}\right)$
in n variables of degree at most \mathbf{D} and all $\mathrm{B} \in \mathcal{B}$, there is a polynomial
of degree $O(\max \{n \log \mathbf{D}, \log \mathrm{C}(f)\})$ such that
$\# \mathcal{Z}(f, B) \leq \# \mathcal{Z}\left(\phi_{f, B}, \mathbb{R}^{n}\right)$.
Moreover, every real zero of f in B has a zero of $\phi_{f, B}$ that converges quadratically to it under Newton's method.

Proof idea: Well-conditioned polynomials are fast converging Taylor series

What's the issue?
We need an estimate of C(f) to make the scheme effective, to me get the estimate fast? Or can we go around it?

A New Goal

Is there a
Montecarlo numerical algorithm that,
given a real polynomial system f outputs an approximation of

$$
\mathcal{Z}\left(f,[-1,1]^{n}\right)
$$

with run-time at most
$O_{n, \mathbf{D}}\left(\log \mathrm{C}(f)+\log \log \frac{1}{\varepsilon}\right)^{O(n)} \mathrm{L}(f)$
with ε being the failure probability and $\mathrm{L}(f)$ the evaluation cost of f ?

On the sphere...
We can cover also random polynomial system with the Weyl scaling. However, we only get probabilistic bounds of the form $O(\sqrt{\mathbf{D}} \log \mathbf{D})^{n}$ appears in the bound.

