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Motivation



Linear algebra I

A ∈ Cm×n a matrix and m ≤ n.
Two norms:

1. Spectral norm.
∥A∥ := max

x∈S(Cn)
∥Ax∥

2. Fröbenius norm.

∥A∥F :=

√√√√∑
i,j

∣∣∣Aij∣∣∣2
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Linear algebra II

A ∈ Cm×n a matrix and m ≤ n

Σ := {B ∈ Cm×n | rankB < m}

…and two conic condition numbers:

1. κ(A) := ∥A∥
dist(A,Σ) = ∥A∥∥A†∥

2. κF(A) := ∥A∥F
distF(A,Σ)

Curiously,
∥A∥
κ(A) = dist(A,Σ) = distF(A,Σ) =

∥A∥F
κ(A)F
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Linear algebra III

In general,
1
m∥A∥F ≤ ∥A∥ ≤ ∥A∥F

but for random A,
EA

∥A∥
∥A∥F

= O
(

1√
m

)
Also,

κ(A)
κF(A)

=
∥A∥
∥A∥F

So…

changing the norm
improves the condition of large

matrices!
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Norms on polynomials



Notation

• X0, X1, . . . , Xn variables
• n+ 1 := number of variables
• q := number of distinct polynomials
• d = (d1, . . . ,dq) tuple of degrees
• D := max{d1, . . . ,dq}
• Hd[q] space of q-tuples f, where fi is homogeneous polynomial
of degree di in the n+ 1 variables X0, X1, . . . , Xn

• N :=
∑q

i=1
(n+di

n
)
= qmin

{
O(Dn),O(nD)

}
= dimHd[q]

• ∆ := diag(
√
d)

• Dxf tangent map TxSn → Rq or T[x]Pn → Cq
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Weyl norm

∥f∥W :=

√√√√ q∑
i=1

∥fi∥2W

where

∥fi∥W =

√√√√∑
α

(
di
α

)−1
|fi,α|2 and fi =

∑
α

fi,αXα

Some properties:

1. Invariant under orthogonal/unitary transformations
2. It controls evaluation: ∥f(x)∥ ≤ ∥f∥W
3. It controls the norm of the derivative: ∥∂f∥W ≤ D∥f∥W
4. It comes from an inner product
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Max norm

∥f∥∞ := max
x∈Sn

∥f(x)∥

and
∥f∥m := max

x∈Sn

√
∥f(x)∥2 + ∥∆−1Dxf∥2

Some properties:

1. Invariant under orthogonal/unitary transformations
2. It controls evaluation: ∥f(x)∥ ≤ ∥f∥∞ ≤ ∥f∥m
3. It controls the norm of the derivative: ∥∂f∥∞ ≤

√
2D∥f∥∞

(Kellogs’ Theorem)
4. ∥f∥∞ better for computation and polynomial inequalities and

∥f∥m better for condition inequalities, but they are
computationally equivalent

∥f∥∞ ≤ ∥f∥m ≤
√
2min{D,

√
qD}∥f∥∞
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Considerations I

Example
f ∈ H1[q], i.e., f linear map given by A ∈ Cn

∥f∥∞ = ∥A∥.

∥f∥m =
√
∥A∥2 + σ2(A)2

Proposition
Let f ∈ Hd[q]. Then

∥f∥∞ ≤ ∥f∥m ≤ ∥f∥W ≤
√
qN∥f∥C∞.
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Considerations II

Theorem
Let f ∈ Hd[q] be a KSS random polynomial tuple and c0 an absolute
constant. Then

P (∥f∥W ≥ c0Nt) ≤ exp(1− Nt2),

and
P
(
∥f∥∞ ≥ c0

√
n log(D)t

)
≤ exp(1− n log(D)t2)

Remark
We can also make this for dobro random polynomials...
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Condition numbers



Old condition number

µ(f, x) := ∥f∥W
σq(∆−1Dxf)

κ(f, x) := ∥f∥W√
∥f(x)∥2 + σq(∆−1Dxf)2

Theorem (Condition Number Theorem)

κ(f, x) = ∥f∥W/distW(f,Σx)

where
Σx := {g | g singular at x}.
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Why does it work?

1. Higher Derivative Estimate: It controls Smale’s Gamma,

γ(f, x) := sup
k≥2

∥∥∥∥ 1k!Dxf†Dkx f
∥∥∥∥ 1

k−1

≤ 1
2D

3/2µ(f, x)

2. It’s inverse is Lipschitz with respect to f,∣∣∣∣ ∥f∥W
µ(f, x) −

∥g∥W
µ(g, x)

∣∣∣∣ ≤ ∥f− g∥W and
∣∣∣∣ ∥f∥W
κ(f, x) −

∥g∥W
κ(g, x)

∣∣∣∣ ≤ ∥f− g∥W;

3. and with respect to x,∣∣∣∣ ∥f∥W
µ(f, x) −

∥f∥W
µ(f, y)

∣∣∣∣ ≤ D∥x− y∥ and
∣∣∣∣ ∥f∥W
κ(f, x) −

∥g∥W
κ(g, x)

∣∣∣∣ ≤ D∥x− y∥.

These are what makes everything work!
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New condition numbers?

M(f, x) := ∥f∥m
σq(∆−1Dxf)

K(f, x) := ∥f∥m√
∥f(x)∥2 + σq(∆−1Dxf)2

Theorem (Condition Number Theorem)

K(f, x) = ∥f∥m/distm(f,Σx)

where
Σx := {g | g singular at x}.
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Do they still work?

1. Higher Derivative Estimate: It controls Smale’s Gamma,

γ(f, x) := sup
k≥2

∥∥∥∥ 1k!Dxf†Dkx f
∥∥∥∥ 1

k−1

≤ min{
√
q,

√
D}D3/2M(f, x)

2. It’s inverse is Lipschitz with respect to f,∣∣∣∣ ∥f∥m
M(f, x) −

∥g∥m
M(g, x)

∣∣∣∣ ≤ ∥f− g∥m and
∣∣∣∣ ∥f∥mK(f, x) −

∥g∥m
K(g, x)

∣∣∣∣ ≤ ∥f− g∥m;

3. and with respect to x,∣∣∣∣ ∥f∥m
M(f, x) −

∥f∥m
M(f, y)

∣∣∣∣ ≤ D∥x−y∥ and
∣∣∣∣ ∥f∥mK(f, x) −

∥g∥m
K(g, x)

∣∣∣∣ ≤ √
2D∥x−y∥.

This means that...
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Do they still work?

We can carry,
up to parameters and constants,

the same condition-based
complexity analysis!

How?
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Just follow the book!

…and some other papers!
(Proof-analysis of all it)
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Case of linear homotopy



State-of-the-art

Expected number
of iterations

Beltrán, Pardo; 2011 O
(
D3/2nN

)
Armentano, Beltrán,
Bürgisser, Cucker,
Shub; 2016

O
(
D3/2nN1/2

)
Lairez; 2017 O

(
D2n5

)
Not for linear homotopy!

Cucker, Ergür,
T-C; ≤ 2020

O
(
D5/2 log(D)2n5/2

)
Some work to do…
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Work to do

1. Can we compute ∥f∥∞ up to a poly(D,n)-factor in O(N)-time?
• To make the complexity bound effective, we need to be able to
approximate the max norm fast

• It can be with O(D)n parallel evaluations and O(n log(D))
comparisons (Non-adaptive grid)

2. More general distributions
3. More general functions?
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Case of grid and subdivision
methods



Grid and subdivision methods

Based on a simple idea:

1. Subdivide region (or refine grid),
2. evaluate, and
3. compare.

Two types of subdivisions:

• Uniform subdivisions→ effective (weak complexity)
• Zero location (Cucker, Krick, Malajovich, Wschebor; 2008-12)
• Homology computation of semialgebraic sets (Cucker, Krick, Shub;
2017), (Bürgisser, Cucker, Lairez; 2018) and (Bürgisser, Cucker, T.-C.;
2018&19)

• Adaptive subdivisions→ efficient (average complexity) – recent!
• Plantinga-Vegter algorithm (Next slide. . .)
• Real condition estimation (Jiadong, Lairez; 2018)

Moreover, we can compute max norms on the way!
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Plantinga-Vegter algorithm I

1. (Plantinga, Vegter; 2004)
• Determination of isotopy type of smooth implicit curves inside a
square and smooth implicit surfaces inside a box

• Certification via interval arithmetic
• No complexity analysis

2. (Burr, Gao, Tsigaridas; 2017)
• Generalization of subdivision to arbitrary dimensions
• Local size bound and continuous amortization
• Worst-case bound for integer polynomials of degree D

3. (Cucker, Ergür, T.-C.; 2019)
• Condition-based analysis (using Weyl norm) of the local size
bound

• Average and smoothed analysis for dobro polynomials, obtaining

Õ
(
D

n2+3n
2

)
subdivisions on average

• More at ISSAC19 next week in Beijing!
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Plantinga-Vegter algorithm II

With the new norm...

Õ
(
D n2+3n

2 )
)

→ Õ
(
D 3n

2 logn+1 D
)

So for curves…
O
(
D3 log3 D

)
,

i.e., a lot better on average that many symbolic algorithms
(Õ(D5τ + D6) c.f. (Kobel, Sagraloff; 2015) and (Diatta, Diatta, Rouillier,
Roy, Sagraloff; 2018))
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Bere arretagatik eskerrik asko!

Galderak?
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