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Motivation



Linear algebra |

A€ C™<" a matrixand m < n.
Two norms:

1. Spectral norm.

Al == max [|Ax]|
xes(cn)

2. Frobenius norm.




Linear algebra Il

A€ C™"amatrixand m<n

Y :={BeC"™"|rankB < m}

..and two conic condition numbers:

1 K(A) = gl = AfAt)
— 1Al
2. ke(A) == dis‘tp(‘AF,Z)
Curiously,
Al . lAllF
—= =dist(A, X) = distr(A, X)) = ——
H(A) lb( ) ) 1S F( ) ) H(A)F



Linear algebra Ill

In general,
1
—lIAle < lIAIl < lIAllF

1Al 9
Al = O(ﬁ)
KA) _ AL
ke(A) (Al

but for random A,

So...

changing the norm
Improves the condition of large
matrices!



Norms on polynomials



-+ Xo, Xq,...,X, variables

- n+1:=number of variables

- g := number of distinct polynomials

- d=(ch,...,dq) tuple of degrees

- D:i=max{d,...,dq}

- Hq4lq] space of g-tuples f, where f; is homogeneous polynomial
of degree d; in the n + 1 variables Xq, X1, ..., X

- Ni= 0 (M) = gmin {O(D"), O(nP)} = dim Hglq]

- A = diag(Vd)

- Dyf tangent map T,\S" — R9 or TpyP" — C9



q
flw = | DIl
i=1

where

) —1
il =[5 () il and fi= S fae

Some properties:

Invariant under orthogonal/unitary transformations
It controls evaluation: [|f(x)|| < [Ifllw
It controls the norm of the derivative: ||0f]lw < D||fllw

= W M =

It comes from an inner product



Max norm

[fllse := max[[f(x)]

XxXesn

and

fll := max VIFI2 + 12D
Some properties:

1. Invariant under orthogonal/unitary transformations

2. 1t controls evaluation: [IfO)] < [Ifllce < [If]lm

3. It controls the norm of the derivative: |0f]lco < v2D|Ifllo
(Kellogs' Theorem)

4. ||f]lo better for computation and polynomial inequalities and
Ifllm better for condition inequalities, but they are
computationally equivalent

Iflse < [Iflm < V2min{D, /aD}|fllo



Considerations |

Example
f € Hq[q], ie, flinear map given by A € C"

Ifllee = IIAl-

[fllm = VIIAII? + 02(A)?

Proposition
Let f € Hqlq]. Then

fllee < fllm < IAlw < VaNIIfIS.



Considerations Il

Theorem

Let f € Hq[q] be a KSS random polynomial tuple and ¢y an absolute
constant. Then

P(”f”W 2 CONt) S exp(‘] _ Ntz)7

and
P (||f||Oo > Coﬁlog(D)t) < exp(1— nlog(D)t?)

Remark
We can also make this for dobro random polynomials...



Condition numbers




Old condition number

Il
oa(A~Dyf)

[Allw
VIR + 0q(A~TD,)?

pulf, x) =

K(f,X) :==

Theorem (Condition Number Theorem)

’%(f’ X) = Hf”VV/diStW(fv ZX)

where
Y. :={g | g singular at x}.
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Why does it work?

1. Higher Derivative Estimate: It controls Smale's Gamma,

’] =1
(5. = sup | Dol < 30%uts0
k>2 || R:
2. It's inverse is Lipschitz with respect to f,
IAlw 19]lw IAlw  lIgllw
—— —| < || - a - <||f — :
W)~ Wgy| =W lwand 15 T g | < I 9l

3. and with respect to x,

e W | < pry
W) )| = P viend

< Dfx = ylI

‘Ww_|mw
(

X)

These are what makes everything work!



New condition numbers?

£l
7o(A-Dyf)

[fllm
VIFX)I? + oq(A~TD,f)?

M(f, x) :=

K(f, x) :=

Theorem (Condition Number Theorem)

K(f’ X) = ||f||m/diStm(f7 ZX)

where
Y. :={g | g singular at x}.



Do they still work?

1. Higher Derivative Estimate: It controls Smale's Gamma,

A(f,X) = sup " < min{y@, VDIOV2M(f,x)
r>2

1
‘ P D D3

2. It's inverse is Lipschitz with respect to f,

[fllm 19w Ifllm 9]l m

M(f,X) - M(Q,X) S Hf,g”m and ‘K(f,X) - K(Q,X) S ”f*g”my
3. and with respect to x,

A E— i B flm lIGllm B

g ~ Mgy | < P g k.| < V2O

This means that...
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Do they still work?

We can carry,
up to parameters and constants,
the same condition-based
complexity analysis!
How?



Just follow the booR!

Grundlehren der mathematischen Wissenschaften 349
A Series of Comprehensive Studies in Mathematics

Peter Biirgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

@ Springer

..and some other papers!

(Proof-analysis of all it)
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Case of linear homotopy




State-of-the-art

Expected number
of iterations

Beltran, Pardo; 2011

O (D*?nN)

Armentano, Beltran,
Burgisser, Cucker,
Shub; 2016

O (D3/2nN1/2)

Lairez; 2017

@ (D2n5) Not for linear homotopy!

Cucker, Ergur,
T-C;, <2020

O (D> log(D)*n*>/?)  Some work to do..




Work to do

1. Can we compute ||f]|oo up to a poly(D, n)-factor in O(N)-time?

- To make the complexity bound effective, we need to be able to
approximate the max norm fast

- It can be with O(D)" parallel evaluations and O(nlog(D))
comparisons (Non-adaptive grid)

2. More general distributions

3. More general functions?



Case of grid and subdivision
methods




Grid and subdivision methods

Based on a simple idea:

1. Subdivide region (or refine grid),
2. evaluate, and
3. compare.

Two types of subdivisions:

- Uniform subdivisions — effective (weak complexity)

- Zero location (Cucker, Krick, Malajovich, Wschebor; 2008-12)

- Homology computation of semialgebraic sets (Cucker, Krick, Shub;
2017), (Blrgisser, Cucker, Lairez; 2018) and (Blirgisser, Cucker, T-C;;
2018&19)

- Adaptive subdivisions — efficient (average complexity) — recent!

- Plantinga-Vegter algorithm (Next slide. . .)

- Real condition estimation (Jiadong, Lairez; 2018)

Moreover, we can compute max norms on the way!
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Plantinga-Vegter algorithm |

1. (Plantinga, Vegter; 2004)
- Determination of isotopy type of smooth implicit curves inside a
square and smooth implicit surfaces inside a box
- Certification via interval arithmetic
- No complexity analysis
2. (Burr, Gao, Tsigaridas; 2017)
- Generalization of subdivision to arbitrary dimensions
- Local size bound and continuous amortization
- Worst-case bound for integer polynomials of degree D
3. (Cucker, Erglir, T-C.; 2019)
- Condition-based analysis (using Weyl norm) of the local size
bound
- Average and smoothed analysis for dobro polynomials, obtaining

@ (Dnz;m)
subdivisions on average
- More at ISSAC19 next week in Beijing!
20



Plantinga-Vegter algorithm I

With the new norm...

o (Dnzﬁn)) -0 (D%n log""" D)
So for curves...
@ (D3 log® D),

i.e., a lot better on average that many symbolic algorithms
(O(D°r + D®) cf. (Kobel, Sagraloff; 2015) and (Diatta, Diatta, Rouillier,
Roy, Sagraloff; 2018))
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Bere arretagatik eskerrik asko!

Galderak?
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