The \mathcal{G} rid Method in Numerical \mathbb{R} eal Algebraic Geometry

A short presentation at the XXI Santaló School of Mathematics

Josué Tonelli-Cueto

Inria Paris & IMJ-PRG Website: https://tonellicueto.xyz Blog: https://illsaidthoughts.xyz/

11/Jul/2022

We want to capture a geometric object

We cover the ambient space by a grid

We select the nearby point to approximate the object

We select the nearby point to approximate the object ...and forget the rest!

We postprocess the selection

We postprocess the selection to capture what we want about the geometric object of interes

1. Cover with a grid the ambient space where the desired object lies

- Which properties should the covering grid have?
- How can we generate such a covering grid efficiently?
- 2. Select the points that approximate the desired object
 - What means to 'approximate' the desired object?
 - How do we select the points so that we approximate the object?
 - How to refine the grid when selection fails? (Non-Adaptive vs. Adaptive)
- 3. Postprocess the points to obtain the information about the desired object
 - How can I combine the information coming from the selected points?
 - Can I do so in a fast way?

Numerical Real Algebraic Geometry (NRAG)

What do we deal with?

Problems defined by real polynomials considering errors in the given input

E.g. feasibility—is there a real zero?—, counting real zeros, Betti numbers/homology groups of a semialgebraic set...

Condition number:

- Measure of the sensitivity of the output to errors of the input for a specific problem
- Complexity of numerical algorithms depends on input size and condition number —same input-size doesn't mean similar run-times!

-inputs with infinite condition number (ill-posed) cannot be handled numerically*

• Probabilistic analysis of the condition number for a random input gives probabilistic complexity

^{*}If input is assumed to be real. If input is assume to be integer, then...

N \mathbb{R} AG III: Condition-based and prob. complexity

Worst-case complexity:

```
\max\{\operatorname{run-time}(\operatorname{ALGORITHM}, i) \mid \operatorname{size}(i) \leq s\}
```

Condition-based complexity:

```
\max\{\operatorname{run-time}(\operatorname{ALGORITHM}, i) \mid \operatorname{size}(i) \leq s, \operatorname{cond}(i) \leq c\}
```

—the condition number allows to explain better the behaviour of ALGORITHM at input *i* **Probabilistic complexity**:

```
\mathbb{E}\{\text{run-time}(\text{Algorithm}, i) \mid \text{size}(i) \leq s\}
```

... or randomly perturbed arbitrary input (smoothed paradigm)

$$\max \left\{ \mathbb{E}\left(\text{run-time}(\text{Algorithm}, \tilde{\mathfrak{i}}) \mid \text{dist}(\tilde{\mathfrak{i}}, i) \leq \sigma \right) \mid \text{size}(i) \leq s \right\}$$

NRAG IV: Local condition number

Let $f \in \mathcal{H}_{n,d}[q] := \prod_{i=1}^{q} \mathbb{R}[X_0, \dots, X_n]_{d_i}$ and $x \in \mathbb{S}^n$, the local condition number of f at x is $\kappa_{W}(f, x) := \frac{\|f\|_{W}}{\sum_{i=1}^{n} \mathbb{R}[X_0, \dots, X_n]_{d_i}}$

$$w_W(f, x) := \frac{1}{\sqrt{\|f(x)\|_2^2 + \sigma_q(\Delta^{-1/2}\mathbf{D}_x f)^2}}$$

where

- $\| \|_W$ is the Weyl norm—the Weyl norm is not the only choice!—,
- σ_q the qth singular value,
- Δ the diagonal matrix with d_1, \ldots, d_q in the diagonal, and
- $D_{\times}f$ the tangent map $T_{\times}\mathbb{S}^n \to \mathbb{R}^q$ of f at x.

Main observation: $\kappa_W(f, x) = \infty$ iff x is a singular zero of f

NRAG V: Global condition number

Let $f \in \mathcal{H}_{n,d}[q] := \prod_{i=1}^{q} \mathbb{R}[X_0, \dots, X_n]_{d_i}$, (G) The global condition number of f is

$$\kappa_W(f) := \max_{x \in \mathbb{S}^n} \kappa_W(f, x).$$

- Controls complexity of non-adaptive grid methods
- Probabilistic properties: Small with high probability, but infinite expectation

(A) The global-average condition number is

$$\kappa_W^{\mathrm{av}}(f) := \sqrt[n]{\mathbb{E}_{\mathbf{x}\in\mathbb{S}^n}\kappa_W(f,\mathbf{x})^n}.$$

- Controls complexity of adaptive grid methods
- **Probabilistic properties**: Finite moments up to order strictly less than n + 1

A Brief History of the \mathcal{G} rid Method in N \mathbb{R} AG

A Brief History of the Grid Method in NRAG

- (Cucker & Smale, 1999) Feasibility of semialgebraic sets —no probabilistic analysis
- (Cucker, Krick, Malajovich & Wschebor; 2008, 2009 & 2011) Counting real zeros

 with high probability under Gaussian assumptions, but no finite expectation
 under robust assumptions by (Ergür, Paouris & Rojas; 2019 & 2021)
- (Cucker, Krick & Shub, 2018) Homology of zero sets

 with high probability under under Gaussian assumptions, but no finite expectation
 also under robust assumptions (T-C; unpublished)
- (Bürgisser, Cucker & Lairez; 2018) Homology of basic semialgebraic sets —with high probability, but no finite expectation
- (Bürgisser, Cucker & T-C; 2020 & 2022) Homology of general semialgebraic sets —with high probability, but no finite expectation
- (T-C; MEGA 2021 & to appear in arXiv in 2022) Counting & computing real zeros —adaptively with finite expectation under robust assumptions!!!

Challenges and Future of the $\mathcal{G}\textsc{rid}$ Method in NRAG

Challenges and Future of the $\mathcal{G}\text{rid}$ Method in NRAG

• Construction of nice grids efficiently

—we want to construct fast grids with structure we can exploit to compute faster (this is why I am here!)

- Postprocessing the subselection of the grid

 —this is one of the bottlenecks for using adaptive grids for homology computation
- Can we make our grids depend on the input? —the grids we construct are not input-sensitive
- Exploit the polynomial nature of the input

—until now we only use that polynomials are C^2 -functions —recent progress on this! (keep attention to arXiv this year)

Eskerrik asko por su atención!