Computing the homology of closed semialgebraic sets

Josué Tonelli-Cueto (Berlin Mathematical School and Technische Universität Berlin)

> May 8, 2018 1st BYMAT Conference

This is joing work with

- Peter Bürgisser (Technische Universität Berlin) and
- Felipe Cucker (CityU Hong Kong)

to be published this year as On the Homology of Semialgebraic Sets. I: Lax Formulas

and funded by the

Einstein Stiftung Berlin Einstein Foundation Berlin,

within the Einstein Visiting Fellowship "Complexity and accuracy of numerical algorithms in algebra and geometry" of Felipe Cucker.

- 1. Semialgebraic sets
- 2. The Problem
- 3. Numerical approach
- 4. Solution for the lax case

Semialgebraic sets

Definition

Let *f* be a tuple of polynomials, a (*semialgebraic*) formula Φ over *f* is a Boolean formula (using negation \neg , conjunction \land and disjunction \lor) formed from atoms of the form ($f_i < 0$), ($f_i \le 0$), ($f_i = 0$), ($f_i > 0$), ($f_i \ge 0$) and ($f_i \ne 0$).

The semialgebraic set $W(f, \Phi)$ is the set obtained from Φ by interpreting the atoms in the usual way, negations as complements, conjunctions as intersections and disjunctions as unions.

Example

- 1. Full circle with a tangent line: $(x^2 + y^2 1 \le 0) \lor (y 1 = 0)$.
- 2. Two lines crossing: $(3x + 2y = 0) \lor (7x 4y = 0)$.
- 3. A line intersection with the positive and negative orthants: $(3x - y = 0) \land (((x > 0) \land (y > 0)) \lor ((x < 0) \land (y < 0))).$

Semialgebraic sets II

Remark

WLOG, all formulas have no negations (\neg) and no atoms of the form ($f_i \neq 0$). From now on, all the considered formulas will satisfy this.

Definition

- A purely conjunctive formula is a formula without disjunctions. It can be written as $\bigwedge_{i \in I} (f_{a_i} \sim_i 0)$ with $\sim_i \in \{<, \leq, =, \geq, >\}$.
- Semialgebraic sets described by a purely conjunctive formula are *basic*.
- A lax formula is a formula where all atoms are of the form $(f_i \leq 0), (f_i = 0)$ and $(f_i \geq 0)$.
- The size of a formula is the number of atoms in it.

Observation

Every closed semialgebraic set can be described by a lax formula.

Why do we care about semialgebraic sets?

- Semialgebraic sets are a large class of sets preserved under many of the usual operations that one can do with sets (intersection, union, complementation, projection,...).
- 2. Semialgebraic sets can be used to describe:
 - Configuration space of a robotic arm.
 - Realization space of a polytope.
 - Configuration space of a molecule.
 - Regions of behavior of a real algebraic object.
 - •

The Problem

Question

Given a semialgebraic set, how does its look like? Which is its shape?

Formalization: Information about shape in the homology groups H_i.

Problem

Given polynomials p_1, \ldots, p_q and a semialgebraic formula Φ over $p := (p_1, \ldots, p_q)$, compute the homology groups of the semialgebraic set $W(p, \Phi)$.

Which complexity do we expect?

Input:

- Polynomial q-tuple $p := (p_1, \ldots, p_q)$, with p_i of degree d_i
- Formula Φ over p

Output: Homology groups of $W(p, \Phi)$

Important parameters:

- *n* := number of variables
- $\cdot q :=$ number of distinct polynomials in the formula
- $D := \max\{d_i \mid 1 \le i \le q\}$
- $N := \sum_{i=1}^{q} {n+d_i \choose n} = q \mathcal{O}(D)^n$ (Dim. space of tuples of polynomials)

About the measure of time:

We measure time in number of algebraic operations. We don't consider time in terms of bit size for now.

Theorem (Gabrielov-Vorobjov)

The sum of the Betti numbers (rank of the free part of the homology groups) of $W(p, \Phi)$ is bounded by $\mathcal{O}(q^2D)^n$.

Observation

The above bound is sharp. It cannot be improved in general.

Observation

We want algorithms with running time exponential in *n* and polynomial in *q* and *D*. Equivalently, we want polynomial time in *N* and exponential in *n*.

However, up to now, we only have the following:

- 1. Cylindrical Algebraic Decomposition computes the homology groups of any semialgebraic set in $(qD)^{2^{O(n)}}$ time. (Collins, 1975) (Wüthrich, 1976)
- The Euler characteristic (in the lax case) can be computed in (nqD)^{O(n)} time. (Basu, 1996)
- 3. The first $\ell + 1$ Betti numbers of a semialgebraic set can be computed in $(qD)^{n^{O(\ell)}}$ time. (Basu, 2006)

Except 2, all these algorithms are doubly exponential!

Observation

All the above algorithms are symbolic.

Numerical approach

Exact algebraic and symbolic manipulations of the data.

Advantages:

- Uniform complexity, it only depends on size of input.
- Algorithm works in all inputs.

Disadvantages:

• Symbolic small complexity does not translate always into bit small complexity.

Advantage/Disadvantage:

• They come together with constructive/structural theorems.

Numerical algorithms

Approximate algebraic and symbolic manipulations of the data.

Advantages:

- Usually, robust against errors in the input. (*Stable*).
- Stability results lead to numerical small complexity converted to bit small complexity.

Disadvantages:

- Non-uniform complexity, it depends on a property of the input that varies with the input, called *condition*.
- There are *ill-posed* inputs for which the algorithm does not work.

Advantage/Disadvantage:

• They come together with existential/structural theorems.

 $\mathcal{C}(\mathrm{input})$ controls the complexity of the algorithm:

- 1. Large condition \Rightarrow Big time and large precision needed.
- 2. Small condition \Rightarrow Little time and small precision needed.

In many cases, $\mathcal{C}(input)$ measures how bad the input is.

Condition Number Theorem:

- · $\Sigma := \{ \text{input} \mid \mathcal{C}(\text{input}) = \infty \}$. (Set of ill-posed inputs).
- $1/C(input) = d(input, \Sigma)$ for some appropriate metric *d*.

Note: Condition in a continuous setting is different, but many times satisfies the above.

We endow the space of inputs with a "natural"/"useful" distribution and study the random variable

$\mathcal{C}(\mathrm{rinput})$

and the corresponding bound for time T(C(rinput)).

Several notions of probabilistic complexity:

- Average complexity. $\mathbb{E}(T(\mathcal{C}(\operatorname{rinput})))$.
- Weak complexity. $\mathbb{E}(T(\mathcal{C}(\operatorname{rinput})) | \operatorname{rinput} \notin E_{\operatorname{size}(\operatorname{rinput})})$ where E_k is a set with probability decaying exponentially fast (*black swans*). (Ameluxen, Lotz; 2015)

The progress until now:

- The homology groups of a real projective variety can be computed numerically in weak exponential time. (Cucker, Krick, Shub; 2017)
- 2. The homology groups of a basic semialgebraic set can be computed numerically in weak exponential time. (Bürgisser, Cucker, Lairez; 2017)

Solution for the lax case

Main steps:

- 1. Sample clouds of points \mathcal{X}_i^{∞} approximating $W(p, (p_i \propto 0))$.
- 2. Convert the clouds of points \mathcal{X}_i^{∞} into simplicial complexes \mathfrak{C}_i^{∞} homologically equivalent to the $W(p, (p_i \propto 0))$.
- 3. Construct $\Phi(\mathfrak{C}_i^{\infty} \mid i \in [q], \infty \in \{\leq, =, \geq\})$ homologically equivalent to $W(p, \Phi)$.
- 4. Compute homology.

- 1. Reduction to homogeneous case in the sphere.
- 2. Estimation of the condition.

Main steps:

- 1. Sample clouds of points \mathcal{X}_i^{∞} approximating $W(p, (p_i \propto 0))$. Smale-Niyagi-Weinberg Sampling theory, lower bounds on reach by condition, containment relations between algebraic and metric neighborhoods
- 2. Convert the clouds of points \mathcal{X}_i^{∞} into simplicial complexes \mathfrak{C}_i^{∞} homologically equivalent to the $W(p, (p_i \propto 0))$.
- 3. Construct $\Phi(\mathfrak{C}_i^{\infty} \mid i \in [q], \infty \in \{\leq, =, \geq\})$ homologically equivalent to $W(p, \Phi)$.
- 4. Compute homology.

- 1. Reduction to homogeneous case in the sphere.
- 2. Estimation of the condition.

Main steps:

- 1. Sample clouds of points \mathcal{X}_i^{∞} approximating $W(p, (p_i \propto 0))$. Smale-Niyagi-Weinberg Sampling theory, lower bounds on reach by condition, containment relations between algebraic and metric neighborhoods
- 2. Convert the clouds of points \mathcal{X}_i^{∞} into simplicial complexes \mathfrak{C}_i^{∞} homologically equivalent to the $W(p, (p_i \propto 0))$. Nerve theorem, Čech complex
- 3. Construct $\Phi(\mathfrak{C}_i^{\infty} \mid i \in [q], \infty \in \{\leq, =, \geq\})$ homologically equivalent to $W(p, \Phi)$.
- 4. Compute homology.

- 1. Reduction to homogeneous case in the sphere.
- 2. Estimation of the condition.

Main steps:

- 1. Sample clouds of points \mathcal{X}_i^{∞} approximating $W(p, (p_i \propto 0))$. Smale-Niyagi-Weinberg Sampling theory, lower bounds on reach by condition, containment relations between algebraic and metric neighborhoods
- 2. Convert the clouds of points \mathcal{X}_i^{∞} into simplicial complexes \mathfrak{C}_i^{∞} homologically equivalent to the $W(p, (p_i \propto 0))$. Nerve theorem, Čech complex
- 3. Construct $\Phi(\mathfrak{C}_i^{\infty} \mid i \in [q], \alpha \in \{\leq, =, \geq\})$ homologically equivalent to $W(p, \Phi)$.

Functiorality, quantitative Durfee's theorem, Thom-Whitney theory

4. Compute homology.

- 1. Reduction to homogeneous case in the sphere.
- 2. Estimation of the condition.

The condition of our input, $\overline{\kappa}_{aff}$, only depends on the tuple of polynomials p not on the formula.

Well-posed inputs (i.e. those with $\overline{\kappa}_{aff}(p) < \infty$):

For every $L \subseteq [q]$, the projective real zero set $V_{\mathbb{P}}(p^L)$ is regular and transversal to the hyperplane at infinity.

Example

p quadratic polynomial:

- 1. $p^{-1}(0)$ hyperbola $\Rightarrow p$ well-posed ($\overline{\kappa}_{aff}(p) < \infty$)
- 2. $p^{-1}(0)$ parabola $\Rightarrow p$ ill-posed ($\overline{\kappa}_{aff}(p) = \infty$)
- 3. $p^{-1}(0)$ ellipse $\Rightarrow p$ well-posed ($\overline{\kappa}_{aff}(p) < \infty$)

 $\mathcal{P}_d[q] := q$ -tuples of polinomials p with p_i of degree $\leq d_i$ $\mathcal{H}_d[q] := q$ -tuples of hom. polinomials p with p_i of degree d_i

Bombieri-Weyl norm:An inner product norm on $\mathcal{H}_d[q]$ that is invariant under orthogonal transformations, i.e., for every $g \in O(n + 1)$ and $p \in \mathcal{H}_d[q]$, $||p \circ g|| = ||p||$. Restricts to $\mathcal{P}_d[q]$ via homogenization.

We consider the uniform distribution on $\mathbb{S}(\mathcal{P}_d[q]) = \mathbb{S}^{N-1}$ where sphere is taken with respect the Bombieri-Weyl norm.

Why? Because it does not favor any direction in space.

Issue: One can consider other distributions for other valid reasons.

- 1. Each polynomial in the tuple sampled independently.
- 2. Coefficients uniformly taken from [-1, 1].
- 3. Coefficients uniformly taken from $[-M, M] \cap \mathbb{Z}$.

Main result

Theorem

There is a numerical algorithm Homology, numerically stable, that, given a tuple $p \in \mathcal{P}_d[q]$ and a lax Boolean formula Φ over p, computes the homology groups of $W(p, \Phi)$. The cost of Homology on input (p, Φ) denoted $cost(p, \Phi)$, that is, the number of arithmetic operations and comparisons in \mathbb{R} , satisfies:

(i)
$$\operatorname{cost}(p, \Phi) \leq \operatorname{size}(\Phi)q^{\mathcal{O}(n)}(nD\overline{\kappa}_{\operatorname{aff}}(p))^{\mathcal{O}(n^2)}$$
.

Furthermore, if p is drawn from the uniform distribution on \mathbb{S}^{N-1} , then:

- 1. The non-lax case.
- 2. Other probability distributions on the input space.

Bere arretagatik eskerrik asko! ¡Gracias por su atención! Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit!

> Galderak? ¿Preguntas? Questions? Fragen?