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Semialgebraic sets



Semialgebraic sets I

Definition
Let f be a tuple of polynomials, a (semialgebraic) formula Φ over f is
a Boolean formula (using negation ¬, conjunction ∧ and disjunction
∨) formed from atoms of the form (fi < 0), (fi ≤ 0), (fi = 0), (fi > 0),
(fi ≥ 0) and (fi ̸= 0).

The semialgebraic set W(f,Φ) is the set obtained from Φ by
interpreting the atoms in the usual way, negations as complements,
conjunctions as intersections and disjunctions as unions.

Example

1. Full circle with a tangent line: (x2 + y2 − 1 ≤ 0) ∨ (y− 1 = 0).
2. Two lines crossing: (3x+ 2y = 0) ∨ (7x− 4y = 0).
3. A line intersection with the positive and negative orthants:

(3x− y = 0) ∧ (((x > 0) ∧ (y > 0)) ∨ ((x < 0) ∧ (y < 0))).
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Semialgebraic sets II

Remark
WLOG, all formulas have no negations (¬) and no atoms of the form
(fi ̸= 0). From now on, all the considered formulas will satisfy this.

Definition

• A purely conjunctive formula is a formula without disjunctions.
It can be written as

∧
i∈I(fai ∼i 0) with ∼i∈ {<,≤,=,≥, >}.

• Semialgebraic sets described by a purely conjunctive formula
are basic.

• A lax formula is a formula where all atoms are of the form
(fi ≤ 0), (fi = 0) and (fi ≥ 0).

• The size of a formula is the number of atoms in it.

Observation
Every closed semialgebraic set can be described by a lax formula.
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Why do we care about semialgebraic sets?

1. Semialgebraic sets are a large class of sets preserved under
many of the usual operations that one can do with sets
(intersection, union, complementation, projection,…).

2. Semialgebraic sets can be used to describe:
• Configuration space of a robotic arm.
• Realization space of a polytope.
• Configuration space of a molecule.
• Regions of behavior of a real algebraic object.
•
•
•
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The Problem



Statement of the problem

Question
Given a semialgebraic set, how does its look like? Which is its shape?

Formalization: Information about shape in the homology groups Hi.

Problem
Given polynomials p1, . . . ,pq and a semialgebraic formula Φ over
p := (p1, . . . ,pq), compute the homology groups of the semialgebraic
set W(p,Φ).
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Which complexity do we expect?

Input:

• Polynomial q-tuple p := (p1, . . . ,pq), with pi of degree di
• Formula Φ over p

Output:Homology groups of W(p,Φ)

Important parameters:

• n := number of variables
• q := number of distinct polynomials in the formula
• D := max{di | 1 ≤ i ≤ q}
• N :=

∑q
i=1

(n+di
n
)
= qO(D)n (Dim. space of tuples of polynomials)

About the measure of time:
We measure time in number of algebraic operations. We don’t
consider time in terms of bit size for now.
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What is known?

Theorem (Gabrielov-Vorobjov)
The sum of the Betti numbers (rank of the free part of the homology
groups) of W(p,Φ) is bounded by O(q2D)n.

Observation
The above bound is sharp. It cannot be improved in general.

Observation
We want algorithms with running time exponential in n and
polynomial in q and D. Equivalently, we want polynomial time in N
and exponential in n.
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What is known?

However, up to now, we only have the following:

1. Cylindrical Algebraic Decomposition computes the homology
groups of any semialgebraic set in (qD)2O(n) time. (Collins, 1975)
(Wüthrich, 1976)

2. The Euler characteristic (in the lax case) can be computed in
(nqD)O(n) time. (Basu, 1996)

3. The first ℓ+ 1 Betti numbers of a semialgebraic set can be
computed in (qD)nO(ℓ) time. (Basu, 2006)

Except 2, all these algorithms are doubly exponential!

Observation
All the above algorithms are symbolic.
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Numerical approach



Symbolic algorithms

Exact algebraic and symbolic manipulations of the data.

Advantages:

• Uniform complexity, it only depends on size of input.
• Algorithm works in all inputs.

Disadvantages:

• Symbolic small complexity does not translate always into bit
small complexity.

Advantage/Disadvantage:

• They come together with constructive/structural theorems.
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Numerical algorithms

Approximate algebraic and symbolic manipulations of the data.

Advantages:

• Usually, robust against errors in the input. (Stable).
• Stability results lead to numerical small complexity converted to
bit small complexity.

Disadvantages:

• Non-uniform complexity, it depends on a property of the input
that varies with the input, called condition.

• There are ill-posed inputs for which the algorithm does not
work.

Advantage/Disadvantage:

• They come together with existential/structural theorems.
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Condition (in a discrete setting)

C(input) controls the complexity of the algorithm:

1. Large condition⇒ Big time and large precision needed.
2. Small condition⇒ Little time and small precision needed.

In many cases, C(input) measures how bad the input is.

Condition Number Theorem:

• Σ := {input | C(input) = ∞}. (Set of ill-posed inputs).
• 1/C(input) = d(input,Σ) for some appropiate metric d.

Note: Condition in a continuous setting is different, but many times
satisfies the above.
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How do we get rid of the condition?

We endow the space of inputs with a ”natural”/”useful” distribution
and study the random variable

C(rinput)

and the corresponding bound for time T(C(rinput)).

Several notions of probabilistic complexity:

• Average complexity. E(T(C(rinput))).
• Weak complexity. E(T(C(rinput)) | rinput /∈ Esize(rinput)) where Ek
is a set with probability decaying exponentially fast (black
swans). (Ameluxen, Lotz; 2015)
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Numerical progress until now

The progress until now:

1. The homology groups of a real projective variety can be
computed numerically in weak exponential time. (Cucker, Krick,
Shub; 2017)

2. The homology groups of a basic semialgebraic set can be
computed numerically in weak exponential time. (Bürgisser,
Cucker, Lairez; 2017)
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Solution for the lax case



The algorithm

Main steps:

1. Sample clouds of points X∝
i approximating W(p, (pi ∝ 0)).

Smale-Niyagi-Weinberg Sampling theory, lower bounds on reach by condition,
containment relations between algebraic and metric neighborhoods

2. Convert the clouds of points X∝
i into simplicial complexes C∝

i
homologically equivalent to the W(p, (pi ∝ 0)).
Nerve theorem, Čech complex

3. Construct Φ(C∝
i | i ∈ [q], ∝∈ {≤,=,≥}) homologically

equivalent to W(p,Φ).
Functiorality, quantitative Durfee’s theorem, Thom-Whitney theory

4. Compute homology.

Hidden technical steps:

1. Reduction to homogeneous case in the sphere.
2. Estimation of the condition.
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Condition used

The condition of our input, κaff, only depends on the tuple of
polynomials p not on the formula.

Well-posed inputs (i.e. those with κaff(p) < ∞):

For every L ⊆ [q], the projective real zero set VP(pL) is regular and
transversal to the hyperplane at infinity.

Example
p quadratic polynomial:

1. p−1(0) hyperbola⇒ p well-posed (κaff(p) < ∞)
2. p−1(0) parabola⇒ p ill-posed (κaff(p) = ∞)
3. p−1(0) ellipse⇒ p well-posed (κaff(p) < ∞)
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Distribution considered

Pd[q] := q-tuples of polinomials p with pi of degree ≤ di
Hd[q] := q-tuples of hom. polinomials p with pi of degree di
Bombieri-Weyl norm:An inner product norm on Hd[q] that is
invariant under orthogonal transformations, i.e., for every
g ∈ O(n+ 1) and p ∈ Hd[q], ∥p ◦ g∥ = ∥p∥. Restricts to Pd[q] via
homogenization.

We consider the uniform distribution on S(Pd[q]) = SN−1 where
sphere is taken with respect the Bombieri-Weyl norm.

Why? Because it does not favor any direction in space.

Issue: One can consider other distributions for other valid reasons.

1. Each polynomial in the tuple sampled independently.
2. Coefficients uniformly taken from [−1, 1].
3. Coefficients uniformly taken from [−M,M] ∩ Z.
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Main result

Theorem

There is a numerical algorithm Homology, numerically stable, that,
given a tuple p ∈ Pd[q] and a lax Boolean formula Φ over p,
computes the homology groups of W(p,Φ).The cost of Homology on
input (p,Φ) denoted cost(p,Φ), that is, the number of arithmetic
operations and comparisons in R, satisfies:

(i) cost(p,Φ) ≤ size(Φ)qO(n)(nDκaff(p))O(n2).

Furthermore, if p is drawn from the uniform distribution on SN−1,
then:

(ii) cost(p,Φ) ≤ size(Φ)qO(n)(nD)O(n3) with probability at
least 1− (nqD)−n, and

(iii) cost(p,Φ) ≤ 2O
(
size(p,Φ)1+

2
D
)
with probability at least

1− 2− size(p,Φ).
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What’s left to do?

1. The non-lax case.
2. Other probability distributions on the input space.
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Bere arretagatik eskerrik asko!
¡Gracias por su atención!

Thank you for your attention!
Vielen Dank für Ihre Aufmerksamkeit!

Galderak?
¿Preguntas?
Questions?
Fragen?
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