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Collaborators and me
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This talk is based on discussions and work with

• Peter Bürgisser (Technische Universität Berlin),
• Felipe Cucker (CityU Hong Kong), and
• Alperen Ergür (Technische Universität Berlin).

To be more developed and written out in

• future work, and
• chapter 5 of my PhD thesis
“Condition and Homology in Semialgebraic Geometry”

All this supported by

,
within the Einstein Visiting Fellowship ”Complexity and accuracy of
numerical algorithms in algebra and geometry” of Felipe Cucker.
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Young Felipe

Thanks to Antonia!
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Philosophy of the talk

符号算法、
数值算法，
只要能解决未解决的问题就
是好算法。
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Felipe and me somewhere in Lantau Island

6



Grid method until now



Grid method

Sketch of the grid method:

• Put a grid of points approaching the space
• Check a condition in all points of the grid
• Refine if the condition is not satisfied at some of the points

• Non-adaptive: Uniform refinement of the whole grid
• Adaptive: Refinement only around the points where something
goes wrong

Philosophy of the method:

• divide et impera
• Smaller operations lead to smaller errors and errors cannot
sequentially accumulate
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Grid method in real algebraic geometry I

(CS98) (Cucker & Smale, 1998)
Grid method is introduced for testing feasibility of a
semialgebraic set
Condition-based analysis, but no probabilistic estimate

(C99) (Cucker, 1999)
Improvements over CS99 are done
Condition number κ(f) is introduced

(CKMW1) (Cucker, Krick, Malajovich & Wschebor, 2008)
Counting zeros of real algebraic set: Condition-based complexity

(CKMW2) (Cucker, Krick, Malajovich & Wschebor, 2009)
Counting zeros of real algebraic set: Condition number theorem
and probabilistic analysis

(CKMW3) (Cucker, Krick, Malajovich & Wschebor, 2012)
Counting zeros of real algebraic set: Alternative probabilistic
analysis (without using conic structure)
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Grid method in real algebraic geometry II

write the “bible of condition”
Grid method appears in Chapter 19 9



Grid method in real algebraic geometry III

(CKS16) (Cucker, Krick & Shub, 2016)
Numerical computation of homology of real projective sets
[using the reach together with the approximation theorem of
(Niyogi, Smale & Weinberger, 2008)]

(BCL17) (Bürgisser, Cucker & Lairez, 2017)
…of basic semialgebraic sets

(BCTC1) (Bürgisser, Cucker & T.-C., 2019)
…of closed semialgebraic sets

(BCTC2) (Bürgisser, Cucker & T.-C., 2019)
…of arbitrary semialgebraic sets
[using construction of (Grabrielov & Vorobjov, 2009)]
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Successes and defeats

Successes:

• Algorithms work in single exponential time, i.e., poly(q,D)poly(n),
with high probability (weak complexity)

• Highly parallelizable algorithm

Defeats:

• Algorithm does not work for all inputs…
(inevitable in numerical algorithms)
We can deal with it with an hybrid approach: Under a condition
threshold go numerical, and above the threshold go symbolic.

• Infinite expectation (unlike the complex case)
• Why are adaptive algorithms not better?
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Felipe making pamplonas
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Plantinga-Vegter algorithm
enters the game



Setting

What do we have?

• An implicit curve C inside [−a,a]2
given by a C1 function f : [−a,a]2 → R

• Interval approximations □f of f and □∂f of ∂f

What do we want?

• Piecewise-linear approximation L of C in [−a,a]2such that
([−a,a]2, C) and ([−a,a]2, L) are isotopic

Any assumptions?

• C smooth
• C Intersects the boundary of [−a,a]2 transversely
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Plantinga-Vegter algorithm for curves I

Algorithm: PV Algorithm for curves (Plantinga, Vegter; 2004)
Input: a ∈ (0,∞) and f : R2 → R
with interval approximations □[f] and ⟨□[∂f],□[∂f]⟩

Subdivision:
Starting with the trivial subdivision S := {[−a,a]n}, repeatedly
subdivide each J ∈ S into 4 squares until for all J ∈ S ,

0 /∈ □f(J) or 0 /∈ ⟨□∂f(J),□∂f(J)⟩

Construction:
Construct piecewise-linear curve L
joining the midpoints of “small” edges of each J ∈ S with oposite
f-signs at their vertices

Output: Piecewise-linear approximation L of C = f−1(0) ∩ [−a,a]2
isotopic to it 14



Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm in higher dimensions

1. (Plantinga, Vegter; 2004) introduced the algorithm for curves and
surfaces
Very efficient in practice

2. (Burr, Gao & Tsigaridas, ISSAC2017) generalized the subdivision
method to higher dimensions
but no construction of the piecewise-linear approximation...

Note that…

cost(subdivision algorithm) ∼ #(subdivisions) · cost(evaluations)
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Subdivision in Plantinga-Vegter algorithm

Algorithm: Subdivision of PV Algorithm (Burr, Gao & Tsigaridas, ISSAC2017)
Input: a ∈ (0,∞), f : Rn → R
with interval approximations □[hf] and □[h′∂f]
for some functions h,h′ : Rn → (0,∞)

Starting with the trivial subdivision S := {[−a,a]n}, repeatedly
subdivide each J ∈ S into 2n cubes until the condition

Cf(J) : 0 /∈ □[hf](J) or 0 /∈ ⟨□[h′∂f],□[h′∂f]⟩

holds for all J ∈ S

Output: Subdivision S ⊆ In of [−a,a]n
such that for all J ∈ S , Cf(J) is true

h,h′ depend on the setting and the interval arithmetic one uses
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Local size bound

Idea: Give a bound to the size of the smallest box containing a point
not satisfying the condition.

Definition (Burr, Gao & Tsigaridas, ISSAC2017)
A local size bound for f is a function bf : Rn → [0,∞) such that for all
x ∈ Rn,

bf(x) ≤ inf{vol (J) | x ∈ J ∈ In and Cf(J) false},

where Cf(J) : 0 /∈ □[hf](J) or 0 /∈ ⟨□[h′∂f],□[h′∂f]⟩

18



1st bound in terms of the local size bound

Idea: Boxes cover the cube. The volume of the boxes should add to
that of the cube. Volume of the boxes is at least number of boxes
times volume of smallest box.

Proposition (Burr, Gao & Tsigaridas, ISSAC2017)
The number of n-cubes of the final subdivision of the subdivision of
the PV algoirhtm on input (f,a), regardless of how the subdivision
step is done, is at most

(2a)n/ inf{bf(x) | x ∈ [−a,a]n}

where bf is a local size bound for f.

(Burr, Gao & Tsigaridas, ISSAC2017) construct a local size bound for
an integer polynomial f ∈ Pn,d and obtain the bound

2O(ndn+1(nτ+nd log (nd)+9n+d) log a)

where τ is the bit-size of the coefficients.
19



2nd bound in terms of the local size bound

Refinement of the idea: Not all boxes have the same size. “ dx
bf(x) is, up

to constant, the infinitesimal number of boxes needed to cover x.”
Formalized by (Burr, 2016) using the technique known as continuous
amortization introduced in (Burr, Krahmer & Yap, 2009)

Theorem (Burr, Gao & Tsigaridas, ISSAC2017)
The number of n-cubes of the final subdivision of the PV algorithm
on input (f,a) is at most

max

{
1,
∫
[−a,a]n

2n
bf(x)

dx
}

where bf is a local size bound for f. Moreover, the bound is finite if
and only if the algorithm terminates.

Techniques of (Burr, Gao & Tsigaridas, ISSAC2017) cannot exploit it!
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Can we exploit it?

(Burr, Gao & Tsigaridas, ISSAC2017) said…

Even though our bounds are optimal, in practice, these are
quite pessimistic […]

and

Since the complexity of the algorithm can be exponential in
the inputs [size], the integral must be described in terms of
additional geometric and intrinsic parameters.

What can be a solution to these issues?

Condition numbers

21



Felipe peeling garlics while I cook
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A condition-based analysis of
Plantinga-Vegter



Local condition number

Definition (Cucker)

Let f ∈ Hn,d[q], the local condition number of f at y ∈ Sn is

κ(f, y) := ∥f∥√
f(y)2 + σq(∆−1Dyf)2

where ∥f∥ is the Weyl norm of f, σq the qth singular value and Dyf the
tangent map with respect the sphere.
Given f ∈ Pn,d[q], the local affine condition number of f at x ∈ Rn is

κaff(f, x) := κ(fh, ϕ(x))

where fh is the homogeneization of f and ϕ : x 7→ 1√
1+∥x∥2

(
1
x

)
.

Unfortunately the theory is developed for the homogenous setting.
Too many translations!
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Geometry of the local condition number

Observation
κ(f, x) = ∞ iff VS(f) has a singularity at x

Ergo κ(f, x) says how near VS(f) is of having a singularity at x.
Can we be more concrete? YES!

Theorem (Condition Number Theorem)
Let x ∈ Sn and

Σx := {g ∈ Hn,d[q] | g(x) = 0, rankDxg < q},

i.e., Σx is the set of f having x as a singular point. Then for every
f ∈ Hn,d[q],

∥f∥
κ(f, x) = dist(f,Σx)

where ∥ · ∥ is the Weyl norm of Hn,d[q] and the distance is the
induced by the Weyl norm of Hn,d[q].

The wanted “additional geometric and intrinsic parameter” 24



Condition-based local size bounds

Theorem (Cucker, Ergür & T.-C., ISSAC2019)
Let f ∈ Pn,d[1]. Then

x 7→ 1/
(
25/2dnκaff(f, x)

)n
is a local size bound for f with the interval approximation of (Cucker,
Ergür & T.-C., ISSAC2019), and

x 7→ 1/
(
23nd2κaff(f, x)

)n
with the interval approximation of Remark 2.2. of (Burr, Tsigaridas,
Yap; ISSAC2017)
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Condition-based cost (Using 1st bound)

Theorem (Cucker, Ergür & T.-C., ISSAC2019)
The number of n-cubes in the final subdivision of the subdision of
the PV algorithm on input (f,a) is at most

dnmax{1,an}2n log n+9n/2 max
x∈[−a,a]n

(κaff(f, x)n)

if the interval approximation is that of (Cucker, Ergür & T.-C.,
ISSAC2019), and at most

d2nmax{1,an}23n
2+2n max

x∈[−a,a]n
(κaff(f, x)n)

if the interval approximation is that of (Burr, Tsigaridas, Yap;
ISSAC2017).

Note that

max
x∈[−a,a]n

(κaff(f, x)n) ≤ κ(fh) := max
x∈Sn

κ(fh, x).

26



Condition-based cost (Using 2nd bound)

Theorem (Cucker, Ergür & T.-C., ISSAC2019)
The number of n-cubes in the final subdivision of the subdision of
the PV algorithm on input (f,a) is at most

dnmax{1,an}2n log n+9n/2 Ex∈[−a,a]n (κaff(f, x)n)

if the interval approximation is that of (Cucker, Ergür & T.-C.,
ISSAC2019), and at most

d2nmax{1,an}23n
2+2n Ex∈[−a,a]n (κaff(f, x)n)

if the interval approximation is that of (Burr, Tsigaridas, Yap;
ISSAC2017).

Note that
Ex∈[−a,a]n (κaff(f, x)n) ≤ Ex∈Sn

(
κ(fh, x)n

)
27



What is this expectation?

Can
Ex∈Sn (κ(f, x)n)

be better than
κ(f) := max

x∈Sn
κ(f, x)?

Yes!
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Dobro random polynomials I

Definition (Cucker, Ergür, T.C.; ISSAC2019)
A dobro random polynomial f ∈ Hn,d[1] with parameters K and ρ is a
polynomial

f :=
∑
|α|=d

(
d
α

)1/2
cαXα

such that the cα are independent random variables such that

P1 Ecα = 0 (centered),
P2 (E|cα|p)

1
p ≤ K√p for p ≥ 1 (subgaussian with Ψ2-norm ≤ K), and

P3 maxu∈R{P(|cα − u| ≤ ε)} ≤ ρε (anti-concentration with constant
ρ).

A dobro random polynomial f ∈ Pn,d[1] is a polynomial f such that its
homogenization fh is so.
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Dobro random polynomials II

Examples of dobro random polynomials:

N KSS random polynomial: (KSS=Kostlan-Smale-Shub)
• cα is Gaussian with unit variance
• Kρ = 1/

√
2π

U Weyl random polynomial:
• cα is uniform distribution in [−1, 1]
• Kρ ≤ 1

E A p-random polynomial:
• cα has density function δpe−|t|p where δp being the appropriate
constant and p ≥ 2

Note: Dobro (добро) is a Russian adjective derived from добрый
(dóbryj) which means kind, good, genial, gentle, soft, etc.
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An unexpected bound

Theorem (Cucker, Ergür, T.C.; ISSAC2019)
Let f ∈ Hn,d[1] be a dobro random polynomial with parameters K and
ρ. Then

EfEx∈Sn
(
κ(fh, x)n

)
≤ d n2+n

2 2
n2+3 log n+9

2 (c1c2Kρ)n+1

where c1, c2 are universal constants.

Corollary
Plantinga-Vegter algorithm has average polynomial time in the
degree.

With an improvement of our condition-based techniques (i.e.
changing to the max norm) we can eliminate the n2 of the exponent!
Also available in smoothed form!
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Interlude: Back to curves

O
(
d5
)
and O

(
d6
)

with the interval arithmetic of, respectively, (Cucker, Ergür & T.-C.,
ISSAC2019) and (Burr, Gao, & Tsigaridas, ISSAC2017)
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Interlude: Back to curves

O
(
d5/2log5/2 d

)
and O

(
d3log3 d

)
with the interval arithmetic of, respectively, (Cucker, Ergür & T.-C.,
ISSAC2019) and (Burr, Gao & Tsigaridas, ISSAC2017) With the new
techniques! Compare to bit-complexity

Õ(d5τ + d6)

of the deterministic algorithm of (Kobel & Sagraloff, 2015) and
(Diatta, Diatta, Rouillier, Roy & Sagraloff, 2018)
Some comments:

• Difference should be careful, complexity measured in different
ways! But still, why so efficient?!

• PV algorithm does not work with singular curves, although there
is work in this direction (Burr, Choi, Galehouse & Yap, 2012)

• Can we develop an hybrid approach working on all inputs with
the same worst case, but faster on average? 32



Working with Felipe
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A condition for adaptive grids?



A new hope

Proposition (T.-C., Thesis)
Let f ∈ Hn,d[q]. Then

κ(f) < ∞ iff Ex∈Sn (κ(f, x)n) < ∞.

Theorem (T.-C., Thesis)
Let f ∈ Hn,d[q] be KSS and α < 1+ 1/n. Then

Ef (Ex∈Sn (κ(f, x)αn)) = O

(
qD

n+1
n − α

)O(n2)

Dependence on α cannot be improved. This can be shown for
hypersurfaces...
Using the max norm, we can get rid of the square in the exponent
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Fast computation of minimum of Lipschitz functions

Theorem (Han, 2019)
Let Λ : Sn → (0, 1] be a L-Lipschitz map. Then there is an adaptive
grid algorithm computing a grid G ⊆ Sn and r ∈ RG

> such that

(1) {B(x, rx) | x ∈ G} covers Sn

(2) For all x ∈ G, rx ≤ Λ(x)

and whose complexity is

O (2+ L)n Ex∈Sn
(
Λ(x)−n

)
.

In particular, the minx∈Sn Λ(x) can be computed in the above time.

Note that

1. It’s easy to see that the above bound is optimal
2. Note similarity with adaptive homotopy continuation
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Fast computation of κ(f)

Easy observation: x 7→ κ(f, x)−1 is D-Lipschitz

Theorem (T.-C., Thesis)
There is an adaptive grid algorithm that computes κ(f) in average
single exponential time, when f ∈ Hn,d[q] be KSS.

Observe that funnily κ(f) does not have finite expectation.

Corollary (T.-C., Thesis)
There is an adaptive grid algorithm that computes a lower bound of
the reach of an spherical algebraic set ZS(f) in average single
exponential time, when f ∈ Hn,d[q] be KSS.
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What about homology?

The condition used is quadratic on κ(f, x), because of the use of
Smale’s α-theory. Assuming all TDA techniques work, this gives a
condition-based bound with

Ex∈Sn
(
κ(f, x)2n

)
for basic semialgebraic sets. This does not give finite expectation!

For general semialgebraic sets, the above cannot even be obtained
yet, due to even more technical problems to solve.

More work to do!
Is there a numerical algorithm

computing homology of semialgebraic sets
in average single exponential time?
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Can we develop a hybrid
symbolic-numerical algorithm
computing homology of
semialgebraic sets in average
single exponential time and
worst-case doubly exponential
time?
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Guztiagatik eskerrik asko! 38
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