Semialgebraic sets

Semialgebraic sets are the class of geometric objects that can be described by real polynomials and inequalities. A way of describing a semialgebraic set is to use formulas. Formulas are expression obtained by combining atoms of the form

- $\varphi(x) < 0$, $\varphi(x) \geq 0$,
- $\varphi(x) > 0$ and $\varphi(x) \leq 0$,
- $\varphi(x) = 0$, $\varphi(x) \neq 0$,

which represent the most basic semialgebraic sets; using

- negations (\neg), which represent complements;
- conjunctions (\land), which represent intersections; and
- disjunctions (\lor), which represent unions.

Formulas should be seen as “recipes” telling us how to construct the described set from the most basic ones.

Example Consider the formula $(x^2 + y^2 - 1 \leq 0) \land (x + y = 0)$.

In this formula, we have three atoms: $x^2 + y^2 - 1 \leq 0$, which represents the filled unit circle; $(x + y = 0)$ or $(x + y > 0)$ or $(x + y < 0)$, a line through the origin; and $(3y - x^2 < 0)$, the points below a parabola.

These can be seen below:

- The red curve represents $x^2 + y^2 - 1 \leq 0$.
- The blue curve represents $(x + y = 0)$.
- The green curve represents $3y - x^2 < 0$.

Following the formula, on the left side, $(x^2 + y^2 - 1 \leq 0) \lor (x + y = 0)$, the points are not in $(y - x^2 < 0)$ to take the points not in $(y - x^2 < 0)$. These operations give the sets below:

- $(x^2 + y^2 - 1 \leq 0) \lor (3y - x^2 < 0)$
- $(x^2 + y^2 - 1 \leq 0) \land (3y - x^2 < 0)$

In the last step, $(x^2 + y^2 - 1 \leq 0) \lor (3y - x^2 < 0)$ tells us to take only those points coming at the same time both from $(x^2 + y^2 - 1 \leq 0)$ or $(3y - x^2 < 0)$.

Our current result

Theorem. There is a numerical algorithm, numerically stable, with input polynomial q-tuples f and lax formulas Φ (i.e. without \equiv, \equiv, \equiv) using the polynomial in f that computes the homology groups of the semialgebraic set described by Φ in weak exponential time for f uniformly distributed on the sphere.

This result is good, because we expect such an algorithm (numeric or not) to take exponential time at least.

Our current result

Semialgebraic sets are the class of geometric objects that can be described by real polynomials and inequalities. A way of describing a semialgebraic set is to use formulas. Formulas are expression obtained by combining atoms of the form

- $\varphi(x) < 0$, $\varphi(x) \geq 0$,
- $\varphi(x) > 0$ and $\varphi(x) \leq 0$,
- $\varphi(x) = 0$, $\varphi(x) \neq 0$,

which represent the most basic semialgebraic sets; using

- negations (\neg), which represent complements;
- conjunctions (\land), which represent intersections; and
- disjunctions (\lor), which represent unions.

Formulas should be seen as “recipes” telling us how to construct the described set from the most basic ones.

Example Consider the formula $(x^2 + y^2 - 1 \leq 0) \land (x + y = 0)$.

In this formula, we have three atoms: $x^2 + y^2 - 1 \leq 0$, which represents the filled unit circle; $(x + y = 0)$ or $(x + y > 0)$ or $(x + y < 0)$, a line through the origin; and $(3y - x^2 < 0)$, the points below a parabola.

These can be seen below:

- The red curve represents $x^2 + y^2 - 1 \leq 0$.
- The blue curve represents $(x + y = 0)$.
- The green curve represents $3y - x^2 < 0$.

Following the formula, on the left side, $(x^2 + y^2 - 1 \leq 0) \lor (x + y = 0)$, the points are not in $(y - x^2 < 0)$ to take the points not in $(y - x^2 < 0)$. These operations give the sets below:

- $(x^2 + y^2 - 1 \leq 0) \lor (3y - x^2 < 0)$
- $(x^2 + y^2 - 1 \leq 0) \land (3y - x^2 < 0)$

In the last step, $(x^2 + y^2 - 1 \leq 0) \lor (3y - x^2 < 0)$ tells us to take only those points coming at the same time both from $(x^2 + y^2 - 1 \leq 0)$ or $(3y - x^2 < 0)$.

Our current result

Theorem. There is a numerical algorithm, numerically stable, with input polynomial q-tuples f and lax formulas Φ (i.e. without \equiv, \equiv, \equiv) using the polynomial in f that computes the homology groups of the semialgebraic set described by Φ in weak exponential time for f uniformly distributed on the sphere.

This result is good, because we expect such an algorithm (numeric or not) to take exponential time at least.