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Plantinga-Vegter algorithm



Setting

What do we have?

• An implicit curve C inside [−a,a]2
given by a C1 function f : [−a,a]2 → R

• Interval approximations □f of f and □∂f of ∂f

What do we want?

• Piecewise-linear approximation L of C in [−a,a]2such that
([−a,a]2, C) and ([−a,a]2, L) are isotopic

Any assumptions?

• C smooth
• C Intersects the boundary of [−a,a]2 transversely
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Plantinga-Vegter algorithm for curves I

Algorithm: PV Algorithm for curves (Plantinga, Vegter; 2004)
Input: a ∈ (0,∞) and f : R2 → R
with interval approximations □[f] and ⟨□[∂f],□[∂f]⟩

Subdivision:
Starting with the trivial subdivision S := {[−a,a]n}, repeatedly
subdivide each J ∈ S into 4 squares until for all J ∈ S ,

0 /∈ □f(J) or 0 /∈ ⟨□∂f(J),□∂f(J)⟩

Construction:
Construct piecewise-linear curve L
joining the midpoints of “small” edges of each J ∈ S with oposite
f-signs at their vertices

Output: Piecewise-linear approximation L of C = f−1(0) ∩ [−a,a]2
isotopic to it 4



Plantinga-Vegter algorithm for curves II: Example
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Plantinga-Vegter algorithm in higher dimensions

1. Plantinga-Vegter algorithm can be generalized to produce
isotopic approximations of surfaces (Plantinga, Vegter; 2004)
This is really why is called Plantinga-Vegter!
Very efficient in practice

2. The subdivision method can be generalized to higher
dimensions (Burr, Gao, Tsigaridas; ISSAC2017)
but no construction of the piecewise-linear approximation...

We will focus on the later, since…
complexity of the algorithm is mainly that of the subdivision part

We will mainly count the number of subdivisions,
because…

cost(subdivision algorithm) ∼ #(subdivisions) · cost(evaluations)
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Subdivision in Plantinga-Vegter algorithm

Algorithm: Subdivision of PV Algorithm (Burr, Gao, Tsigaridas; ISSAC2017)
Input: a ∈ (0,∞), f : Rn → R
with interval approximations □[hf] and □[h′∂f]
for some functions h,h′ : Rn → (0,∞)

Starting with the trivial subdivision S := {[−a,a]n}, repeatedly
subdivide each J ∈ S into 2n cubes until the condition

Cf(J) : 0 /∈ □[hf](J) or 0 /∈ ⟨□[h′∂f],□[h′∂f]⟩

holds for all J ∈ S

Output: Subdivision S ⊆ In of [−a,a]n
such that for all J ∈ S , Cf(J) is true

h,h′ depend on the setting and the interval arithmetic one uses
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The question!

Can we understand the
complexity of the subdivision of
the PV algorithm for polynomials
f ∈ Pn,d in terms of the number
of variables n and the degree d?
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Local size bounds and
continuous amortization
(Previous state-of-the-art)



Local size bound

Idea: Give a bound to the size of the smallest box containing a point
not satisfying the condition.

Definition (Burr, Gao, Tsigaridas; ISSAC2017)
A local size bound for f is a function bf : Rn → [0,∞) such that for all
x ∈ Rn,

bf(x) ≤ inf{vol (J) | x ∈ J ∈ In and Cf(J) false},

where Cf(J) : 0 /∈ □[hf](J) or 0 /∈ ⟨□[h′∂f],□[h′∂f]⟩
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1st bound in terms of the local size bound

Idea: Boxes cover the cube. The volume of the boxes should add to
that of the cube. Volume of the boxes is at least number of boxes
times volume of smallest box.

Proposition (Burr, Gao, Tsigaridas; ISSAC2017)
The number of n-cubes of the final subdivision of the subdivision of
the PV algoirhtm on input (f,a), regardless of how the subdivision
step is done, is at most

(2a)n/ inf{bf(x) | x ∈ [−a,a]n}

where bf is a local size bound for f.

(Burr, Gao, Tsigaridas; ISSAC2017) construct a local size bound for an
integer polynomial f ∈ Pn,d and obtain the bound

2O(ndn+1(nτ+nd log (nd)+9n+d) log a)

where τ is the bit-size of the coefficients.
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2nd bound in terms of the local size bound

Refinement of the idea: Not all boxes have the same size. “ dx
bf(x) is, up

to constant, the infinitesimal number of boxes needed to cover x.”
Formalized by (Burr; 2016) using the technique known as continuous
amortization introduced in (Burr, Krahmer, Yap; 2009)

Theorem (Burr, Gao, Tsigaridas; ISSAC2017)
The number of n-cubes of the final subdivision of the PV algorithm
on input (f,a) is at most

max

{
1,
∫
[−a,a]n

2n
bf(x)

dx
}

where bf is a local size bound for f. Moreover, the bound is finite if
and only if the algorithm terminates.

Techniques of (Burr, Gao, Tsigaridas; ISSAC2017) cannot exploit it!
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Can we exploit it?

(Burr, Gao, Tsigaridas; ISSAC2017) said…

Even though our bounds are optimal, in practice, these are
quite pessimistic […]

and

Since the complexity of the algorithm can be exponential in
the inputs [size], the integral must be described in terms of
additional geometric and intrinsic parameters.

What can be a solution to these issues?

Condition numbers*

*as described in the book Condition (Bürgisser, Cucker; 2013)
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Condition-based complexity



Local condition number

Definition (Cucker)

Given an homogeneous polynomial F ∈ Hn,d, the local condition
number of F at y ∈ Sn is

κ(F, y) := ∥F∥√
F(y)2 + ∥∂yF|TySn∥2/d

where ∥F∥ is the Weyl norm of F.
Given f ∈ Pn,d, the local affine condition number of f at x ∈ Rn is

κaff(f, x) := κ(fh, ϕ(x))

where fh is the homogeneization of f and ϕ : x 7→ 1√
1+∥x∥2

(
1
x

)
.

Unfortunately the theory is developed for the homogenous setting.
Too many translations!
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Geometry of the local condition number

Observation
κaff(f, x) = ∞ iff VR(f) has a singularity at x

Ergo κaff(f, x) says how near VR(f) is of having a singularity at x.
Can we be more concrete? YES!

Theorem (Condition Number Theorem)
Let x ∈ Rn and

Σx := {g ∈ Pn,d | g(x) = ∂g(x) = 0},

i.e., Σx is the set of hypersurfaces having x as a singular point. Then
for every f ∈ Pn,d,

∥f∥
κaff(f, x)

= dist(f,Σx)

where ∥ · ∥ is the Weyl norm of Pn,d and the distance is the induced
by the Weyl norm of Pn,d.

The wanted “additional geometric and intrinsic parameter” 14



Condition-based local size bounds

Theorem (Cucker, Ergür, T.-C.; ISSAC2019)
Let f ∈ Pn,d. Then

x 7→ 1/
(
25/2dnκaff(f, x)

)n
is a local size bound for f with the interval approximation of (Cucker,
Ergür, T.-C.; ISSAC2019), and

x 7→ 1/
(
23nd2κaff(f, x)

)n
with the interval approximation of Remark 2.2. of (Burr, Tsigaridas,
Yap; ISSAC2017)
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Condition-based cost

Theorem (Cucker, Ergür, T.-C.; ISSAC2019)
The number of n-cubes in the final subdivision of the subdision of
the PV algorithm on input (f,a) is at most

dnmax{1,an}2n log n+9n/2 Ex∈[−a,a]n (κaff(f, x)n)

if the interval approximation is that of (Cucker, Ergür, T.-C.; ISSAC2019),
and at most

d2nmax{1,an}23n
2+2n Ex∈[−a,a]n (κaff(f, x)n)

if the interval approximation is that of (Burr, Tsigaridas, Yap;
ISSAC2017).

Observe that the complexity depends on Ex∈[−a,a]n (κaff(f, x)n)
which varies with f. This is why the name condition-based complexity
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Probabilistic complexity



Uniform complexity analyses

Worst-case complexity analysis:

What is the worst running time?

Average complexity analysis:

What is the expectation of the running time on a random
input?

Smoothed complexity analysis: (Spielman, Teng; 2002)

What is the worst running time after perturbing the input
with a random perturbation (with weight σ)?

Smoothed lies between worst-case and average complexity

• σ → 0: We recover worst-case complexity
• σ → ∞: We recover average analysis
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What do we mean by random? I

Definition (Cucker, Ergür, T.C.; ISSAC2019)
A dobro random polynomial f ∈ Hn,d with parameters K and ρ is a
polynomial

f :=
∑
|α|=d

(
d
α

)1/2
cαXα

such that the cα are independent random variables such that

P1 Ecα = 0 (centered),
P2 (E|cα|p)

1
p ≤ K√p for p ≥ 1 (subgaussian with Ψ2-norm ≤ K), and

P3 maxu∈R{P(|cα − u| ≤ ε)} ≤ ρε (anti-concentration with constant
ρ).

A dobro random polynomial f ∈ Pn,d is a polynomial f such that its
homogenization fh is so.
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What do we mean by random? II

Examples of dobro random polynomials:

N KSS random polynomial: (KSS=Kostlan-Smale-Shub)
• cα is Gaussian with unit variance
• Kρ = 1/

√
2π

U Weyl random polynomial:
• cα is uniform distribution in [−1, 1]
• Kρ ≤ 1

E A p-random polynomial:
• cα has density function δpe−|t|p where δp being the appropriate
constant and p ≥ 2

Note: Dobro (добро) is a Russian adjective derived from добрый
(dóbryj) which means kind, good, genial, gentle, soft, etc.
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Our result I: Average

Theorem (Cucker, Ergür, T.C.; ISSAC2019)
Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ.
The expected number of n-cubes in the final subdivision of the PV
algorithm on input (f,a) is at most

d n2+3n
2 max{1,an}2

n2+16n log(n)
2 (c1c2Kρ)n+1

if the interval approximations is as in (Cucker, Ergür, T.C.; ISSAC2019)
and

d n2+5n
2 max{1,an}2

7n2+9n log(n)
2 (c1c2Kρ)n+1

if the interval approximation is as in (Burr, Gao, Tsigaridas;
ISSAC2017). c1 and c2 universal constants.

With an improvement of our condition-based techniques we can
eliminate the n2 of the exponent!
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Our result II: Smoothed

Theorem (Cucker, Ergür, T.C.; ISSAC2019)
Let f ∈ Pn,d, σ > 0, and g ∈ Pn,d a dobro random polynomial with
parameters K and ρ . Then the expected number of n-cubes of the
final subdivision of the PV algorithm for input (qσ,a) where
qσ = f+ σ∥f∥g is at most

d n2+3n
2 max{1,an}2

n2+16n log(n)
2 (c1c2Kρ)n+1

(
1+ 1

σ

)n+1
if the interval approximations (Cucker, Ergür, T.C.; ISSAC2019) and

d n2+5n
2 max{1,an}2

7n2+9n log(n)
2 (c1c2Kρ)n+1

(
1+ 1

σ

)n+1
if the interval approximation is as in (Burr, Gao, Tsigaridas;
ISSAC2017). c1 and c2 are universal constants.

With an improvement of our condition-based techniques we can
eliminate the n2 of the exponent! 21



Our result III: Back to curves

O
(
d5
)
and O

(
d6
)

with the interval arithmetic of, respectively, (Cucker, Ergür, T.C.;
ISSAC2019) and (Burr, Gao, Tsigaridas; ISSAC2017)
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Our result III: Back to curves

O
(
d5/2log5/2 d

)
and O

(
d3log3 d

)
with the interval arithmetic of, respectively, (Cucker, Ergür, T.C.;
ISSAC2019) and (Burr, Gao, Tsigaridas; ISSAC2017) With the new
techniques! Compare to bit-complexity

Õ(d5τ + d6)

of the deterministic algorithm of (Kobel, Sagraloff; 2015) and (Diatta,
Diatta, Rouillier, Roy, Sagraloff; 2018)
Some comments:

• Difference should be careful, complexity measured in different
ways! But still, why so efficient?!

• PV algorithm does not work with singular curves, although there
is work in this direction (Burr, Choi, Galehouse, Yap; 2012)

• Can we develop an hybrid approach working on all inputs with
the same worst case, but faster on average? 22
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Idea for the condition-based bound

Proposition
Let f ∈ Pn,d and x ∈ Rn. Then either

|̂f(x)| > 1
2
√
2dκaff(f, x)

or
∥∥∥∂̂f(x)∥∥∥ >

1
2
√
2dκaff(f, x)

.

Above, f̂ is given by

f̂ : x 7→ f(x)/
(
∥f∥(1+ ∥x∥2)(d−1)/2

)
and ∂̂f by

∂̂f : x 7→ ∂f(x)/
(
d∥f∥(1+ ∥x∥2)d/2−1

)
being both functions (1+

√
d)-Lipschitz.



Ideas for the probabilistic bound

1. By Fubini-Tonelli, to bound

EfEx∈[−a,a]nκaff(f, x)n,

it is enough to get tail bounds of κaff(f, x) with respect to f
independently of x

2. Since Σx is a linear subspace, we can write

κaff(f, x) =
∥f∥
∥Pxf∥

where Px : Pn,d → Σ⊥
x is an orthogonal projection with respect

the Weyl inner product.
3. Probabilistic steps for average analysis:

3.1 κaff(f, x) large implies either ∥f∥ large or ∥Pxf∥ small
3.2 “∥f∥ large” controlled by subgaussian property
3.3 “∥Pxf∥ small” controlled by anticoncentration and independence

4. Similar for smoothed analysis
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