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Abstract

The computation of the homology groups of semialgebraic sets (given by Boolean for-
mulas) remains one of the open challenges of computational semialgebraic geometry. De-
spite the search for an algorithm taking singly exponential time only on the number of vari-
ables, as of today, the existing algorithms are symbolic and doubly exponential. In this PhD
thesis, we show how to obtain a numerical algorithm running in single exponential time with
very high probability, which improves the state-of-the-art. To do so, we explain the underly-
ing ideas, methods and technigues from numerical algebraic geometry, numerical complex-
ity and topological data analysis that made this progress possible. We finish with a list of
open problems and questions pointing to a possible future of the numerical computation of
topological invariants.

Additionally, in the appendices, we cover the topic of the expected number of real zeros
of a random fewnomial system and we give an accessible account of the central theme in
Spanish.

Zusammenfassung

Die Berechnung der Homologiegruppen von semialgebraischen Mengen (gegeben durch
boolesche Formeln) bleibt eine der offenen Herausforderungen der algorithmischen semial-
gebraischen Geometrie. Trotz der Suche nach einem Algorithmus mit einfach exponentieller
Laufzeit in der Anzahl der Variablen, sind die nach heutigem Stand bekannten Algorithmen
symbolisch und doppelt exponentiell. In dieser Doktorarbeit zeigen wir, wie man einen nu-
merischen Algorithmus konstruiert, der mit groBer Wahrscheinlichkeit einfach exponentiell
ist und somit den Stand der Forschung verbessert. Dazu erklaren wir die zugrundliegenden
Ideen, Methoden und Techniken von numerischer algebraischen Geometrie, numerischer
Komplexitat und topologischer Datenanalyse, die dieser Fortschrift moglich machten. Wir
enden mit einer Liste offener Probleme und Fragen, die auf eine mdgliche Zukunft von Be-
rechnung der topologischen Invarianten weisen.

AuBerdem, behandeln wir im Anhange die erwartete Anzahl reeller Nullstellen eines zu-
falligen Systems polynomialer Gleichungen mit wenigen Termen und geben einen informellen
Uberblick Uber das Hauptthema auf Spanisch.



Laburpena

Multzo semialjebraikoen (formula boolearrek emandakoen) homologia-taldeak kalkula-
tzeak jarraitzen du, oraindik ere, geometria semialjebraiko konputazionalaren erronka han-
dienetako bat izaten. Bilatzen den algoritmoak aldagai kopuruan baino ez du hartzen den-
bora behin esponentziala; hala ere, gaur egun dauden algoritmo guztiak sinbolikoak eta bi
aldiz esponentzialak dira. Doktorego-tesi honetan erakusten dugu nola lor daitekeen debora
behin esponentzialean eta probabilitate handiarekin exekutatzen den zenbakizko algoritmo
bat; hori teknikaren egoeraren hobekuntza da. Horretarako, zenbakizko geometria aljebrai-
koaren, zenbakizko konplexutasunaren eta datu-analisi topologikoaren azpian dauden eta
aurrerapen hori posible egin duten ideia, metodo eta teknikak azaltzen ditugu. Problemen eta
galdera irekien zerrenda batekin bukatzen dugu, zeinek inbariante topologikoen zenbakizko
konputazioaren etorkizun posible bat adierazten baitute.

Gainera, eranskinetan, ausazko sistema oligonomiko baten zero kopurua aztertzen du-
gu, eta tesi honen ikuspegi informala ematen dugu gaztelaniaz.

Resumen

El célculo de los grupos de homologia de conjuntos semialgebraicos (dados por for-
mulas booleanas) es todavia uno de los mayores desafios de la geometria semialgebraica
computacional. Aunque se busca un algoritmo que tome a lo sumo tiempo simplemente
exponencial en el nUmero de variables, hasta el dia de hoy todos los algoritmos existentes
son simbdlicos y doblemente exponenciales. En esta tesis doctoral, mostramos cémo se
puede obtener un algoritmo numérico que tome tiempo simplemente exponencial con al-
ta probabilidad, lo cual es una mejora del estado del arte. Para ello, explicamos las ideas,
métodos y técnicas subyacentes procedentes de la geometria algebraica numérica, de la
complejidad numérica y del andlisis topoldgico de datos que han hecho posible este pro-
greso. Terminamos con una lista de problemas y preguntas abiertas que indican un posible
futuro de la computacion numeérica de invariantes topolégicos.

Ademas, en los apéndices, estudiamos el nimero esperado de ceros reales de un
sistema oligonémico aleatorio y damos una vision informal del tema principal de esta tesis
en castellano.
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Assumptions and conventions

Personal Pronoun Pronouncement

Following Spivak [Q16; Personal Pronoun Pronouncement], we will use a genderless
pronoun, now known today as the Spivak pronoun, to avoid the gender specification when-
ever we refer to a person of undetermined gender (like a random mathematician or the
reader). In this way, we will use “E” instead of “he or she” or “they”, “Em” instead of “him or
her” or “them”, and “Eir” instead of “his or her” or “their”.

Conventions on translations and transliterations

Translations \Whenever we have consulted a translated work, we cite the translation
together with a note indicating which work is a translation of instead of adding a reference
to the original work also. See [413] for an example.

Transliterations to the Latin alphabet The general convention has been to use the
transliteration preferred by the author if possible, and the most accepted one otherwise.
This allows us to be consistent and to avoid referring to the same author by several names.
However, this means that the used spelling of the romanized name might differ from that of
a particular referred reference, which will be probably the case for names that have changed
their transliteration over time (such as names with Cyrillic spelling). If the cited reference is
written in the author’s mother tongue, we additionally indicate in parenthesis the spelling of
the author’s name in the original alphabet (as it can be seen in the reference [414]).

Assumptions on the reader and mathematical conventions

This thesis, as any other mathematics text in history and in the world, will assume cer-
tain knowledge on the part of the reader. With the exception of the last appendix, which
requires Spanish knowledge, but no mathematical knowledge; the thesis will assume on
the reader the ability to read and understand English!, some mathematical knowledge and
certain mathematical maturity. The latter should be interpreted as having an ability to follow
and understand mathematical ideas and proofs and experience reading mathematics at the
graduate level at least. The mathematical knowledge needed and some conventions that we
will use are explained below.

Algebraic geometry We will not assume any knowledge in algebraic geometry be-
yond the basic notions such as zero sets and polynomials. A knowledge in real and semial-
gebraic geometry will be useful to understand the motivation of certain questions from the

1If the reader has arrived to this point, it means that probably E satisfies this requirement or that E likes to
stare at sequences of characters that are incomprehensible for Em.
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algebraic geometric perspective, but any necessary prerequisites will be introduced, par-
ticularly the notions of semialgebraic set and condition number of real projective algebraic
sets.

Algebraic topology We will assume that the reader is familiar with the basics of al-
gebraic topology: homotopies, continuous retractions, homotopy equivalences, singular ho-
mology and the Mayer-Vietoris theorem in homology. We will not require any knowledge on
homotopy groups, beyond their definition and the fact that they are preserved under homo-
topy equivalences. The reader can find any unknown notion in the standard references [216]
and [346].

Complexity theory We will assume some familiarity with complexity theory, in the
sense that we assume that the reader is familiar with how the time complexity of an algorithm
is estimated in general. The only point of the thesis were a serious knowledge of complexity
theory is needed is in the subsection 05%-3 where we give the computer scientific motivation
of the problem that this thesis discusses.

Differential and Riemannian geometry We will assume that the reader is comfort-
able and familiar with the standard concepts of differential and Riemannian geometry that
are covered in a usual graduate course in mathematics. The reader can find any unknown
notion in the standard references [275] and [381].

We will be working mainly on the sphere S” and R"*!. To be clear, for any smooth
map f : R — RY, including polynomials, we will denote by D, f the tangent map
T,S" — R of f, as map on the sphere S”, at x € S” and by D,f the tangent map
T,R™L = R™1 — RY9 of f,as a map on R at x € R, Whenf : M — Nis
a smooth map between smooth manifolds M and N such that either M or N is not an
Euclidean space, we will denote by D, f the tangent map TyM — Tr N of f at x € M.

Linear algebra \We will assume that the reader is familiar with the Singular Value De-
composition (SVD), singular values and orthogonal and unitary transformations. The reader
can find any unknown notion in [392].

Probability theory \We assume that the reader is familiar with the basic notions of
probability theory. By this, we mean that the reader must know the definition and interpreta-
tion of probability, random variables and vectors and expectations in the continuous setting.
The reader can find any unknown notion in [164; Ch. 7].
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Boolean formulas (generally)
purely conjunctive formulas (generally)
value in X of @ at (Sy,...,S,;) € X?

normal form

disjunctive normal form

sign vector of ¢

strict disjunctive normal form

zero set of f in the sphere §”
semialgebraic set described by (p, @)

spherical semialgebraic set described by (f, @)

algebraic neighborhood of Z°(f)

spherical semialgebraic set described by (f, t, ®)

algebraic neighborhood of S(f, t, ®)
Gabrielov-Vorobjov (8, €)-block

Gabrielov-Vorobjov (8, €)-approximation
approximating cloud of G-points for (f, t)

complex zero set of f
zero set of f

dist Euclidean distance

p. 4

p. 53

(1.31)

Proposition 2512.1
Proposition 2512.2
p. 71

Lemma 2523
(4.11)

(4.12)

Definition 2541
Definition 2541

(4.1)
Definition 452

B(x, r) Euclidean ball with center x and radius r
B(x,r) closed Euclidean ball with center x and radius r
U(X,r) (Euclidean) r-neighborhood (3.2
dists geodesic distance on S” (1.9
Bs(x,r) ball with center x and radius r with respect to dists
§§(X, r) closed ball with center x and radius r with respect to dists
Us(X, r) spherical r-neighborhood (2.3)
distyy Distance with respect the Weyl norm
Bw(f,r) ball with center f and radius r with respect to distyy
disty Hausdorff distance (3.1)

disty

distance to X function
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Differential geometry

R"*!  (n + 1)-dimensional Euclidean space

S™  n-dimensional sphere
S"  upper half n-dimensional sphere
S§ (n - 1)-dimensional sphere given by Z5(X)
TyM tangent space of M at x
NyM normal cone of M at x (in its ambient space)
Dxf tangent map TyM — TN

tangent map TxS" — TN, if f polynomial tuple

Dyf tangentmap R™ — R™ at x
tO (1.29)
T9) (4.20)
Vf gradient vector of f
Linear algebra
1 vector of ones
[ identity matrix
|l - I Frobenius norm (1.86)
(-, -)r Frobenius inner product (1.6)
|| - || operator norm (1.7
ci(A) ith singular value of A
A*  (conjugate) transpose of A
A" pseudoinverse of A (1.12)
SNF(A)  Smith Normal Form of A (3.23)
O(n) orthogonal group of order n
U(n) unitary group of order n
hx (4.23)
Condition numbers and relatives
k(f, x) local condition number of f at x (1.10)
k(f) global condition number of £ 1.11)
u(f, x) (1.15)
Y(f,x) Smale’s gamma (1.16)
Y(f, x) Smale’s projective gamma 1.17)
K(f, x) local intersection condition number of f at x (1.23)
Kk(f) global intersection condition number of f (1.24)
Kaff(p) global affine intersection condition number of p
Kae(P, X) (1.36)
Kaer(P) (1.36)
LLI(¢) separation of t (2.7
)

local affine condition number of f at x

Definition 5522
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Algebraic topology
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(singular) homology

kth (singular) homology group
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free simplex with vertex set X
realization of a simplicial complex S
dimension of face o
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set of simplicial k-cycles of S
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Probability theory

P

E

|Ex€K
Y

A
f.a,p
N(x, o)
U(SN_l)
Xm

L,

Fr.

probability

expectation

expectation over the uniform distribution on K

random vector

random matrix

random polynomial tuples

normal distribution centered at x with standard deviation o
uniform distribution on the sphere SN-!

x>-distribution with m degrees of freedom

concentration function of ¥ € R¥

Fisher-Snedecor distribution with k and / degrees of freedom

Differential tools

N’ Newton vector field of £
Nf(’t’d’ discontinuous Newton vector field of (f, t, )
Nea o (F, A)-lartition
ng strata of J1g ) associated to J
Mea (F, A)-partition
M Strata of ¢ ) associated to (I, o)

Special functions
I' Euler's Gamma function
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G
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3(k)

XiX

(2.8)

Definition 2524
Definition 2524
Definition 2525
Definition 2525

uniform grid of order i (4.19)
random W1-grid with failure probability 57! p. 143
recursive 1-grid with seeds Ry and N (4.24)
boxes [][aj, b;] included in X
interval approximation of F (5.4)
midpoint of J € O[X]
maximum width of J € O[X]
(5.5)
(5.14)
F, FZ")t’el floating-point number system (4.30)
round-off unit Definition 4531
rounding map (4.31)
approximate version of op (4.32)
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Die Wahl eines Stils, einer Wirklichkeit, einer Wahrheitsform, Realitdts- und Rationalitatskriterien
eingeschlossen, ist die Wahl von Menschwerk. Sie ist ein sozialer Akt, sie hdngt ab von der
historischen Situation, sie ist gelegentlich ein relativ bewuBter VVorgang [...], sie ist viel &fter di-
reketes Handeln aufgrund starker Intuitionen. »Objektiv« ist sie nur in dem durch die historische
Situation vorgegebenen Sinn: auch Objektivitét ist ein Stilmerkmal [...].

Paul Feyerabend, Wissenschaft als Kunst

Introduction

This dissertation presents the numerical approach to “one of the most fundamental open
questions in algorithmic semi-algebraic geometry” [25; §5]: is there a poly(q, D)po'y(”)—time
algorithm for computing the homology groups (or Betti numbers) of a semialgebraic set in
R" described by a Boolean formula involving g real polynomials of degree at most D? Our
presentation will be a synthesis of the currently existing results: the author’s PhD work in [91,
92, 136], with Peter Blrgisser, Felipe Cucker and Alperen Ali Erglr; and the immediately
preceding work in [142, 88], by Peter Burgisser, Felipe Cucker, Teresa Krick, Pierre Lairez
and Michael Shub.

Additional PhD work in [93], with Peter Blrgisser and Alperen Ali Erglr, regarding the
number of real zeros of a random fewnomial system can be found in the Appendix F, since
it does not follow the main thought stream. Also, in Appendix M, an accessible account of
the central theme is given in Spanish’.

The present introduction will answer in the following three sections the next three fun-
damental questions:

1. What is precisely the problem we are trying to solve?
2. Why do we care about this problem?
3. What did others do towards the solution of this problem? And what have we done?

After answering these, the analytical index at the end intends to give an overview of the
content and structure of the present thesis.

"The reason for giving it in Spanish and not in English (or German) is that the target audience (relatives and
friends back in Spain) is Spanish-speaking, but not always English-speaking.
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05* Description of the problem

To describe the problem at hand, we review the terms appearing in the question above
and only then, after the shades of meaning have been clarified, state the question with all its
details.

05'—1 Concepts and objects of the problem

The question above mentions three fundamental objects in it: algorithm, homology
groups (and Betti numbers), and semialgebraic sets. These concepts are clear to any expert
in computational semialgebraic geometry, but they may be unclear to a random mathemati-
cian. E might be unfamiliar with some of these notions (as it usually happens with semialge-
braic sets) or might give them a meaning that was not intended (as it can happen with such
a polysemous concept as homology).?

Algorithm

The notion of algorithm can have many definitions. However, by the Church-Turing the-
sis[12; Ch. 7], all of the ones reflecting computation in the real world turn out to be equivalent.
Moreover, strong Church-Turing thesis [12; Ch. 7] says that all of them have equivalent no-
tions of run-time and computing space, in the sense that the asymptotic complexity classes
of complexity (polynomial, singly exponential, etc.) are the same for all models of computa-
tion. The interested reader can consult the details about the formal models of computation
and their equivalences in any of the standard references, e.g., [12, 308].

Taking advantage of living in the era of computers, our model of computation will be
pseudo-code. In the usual setting, we would measure the run-time in terms of the number of
bit-operations that the algorithm described by the program in pseudo-code executes. How-
ever, in computational semialgebraic geometry, it is more clarifying to consider an algebraic
model of computation in which algebraic operations and comparisons between real num-
bers can be done at unit cost. Because of this, we will assume that the program executed
by our pseudo-code can perform arithmetic operations and comparisons with real numbers
exactly, we will allow as inputs any real number and we will measure the run-time by the
number of arithmetic operations and comparisons. This could be formalized using BSS ma-
chines [68; Ch. 4], but this level of formality will not be required by us as we don’t intend to
prove complexity lower bounds.

The adoption of an algebraic model of computation means stepping out of a realistic
model of computation. To be able to translate our algebraic pseudo-code into a real al-
gorithm, we need to accompany our complexity analysis with a bound on the size of the
approximations/representations of the real numbers that our programs work with. This is
done in two ways:

1. We restrict the real numbers input-output to an efficiently computable class of real
numbers. By which we mean a set of real numbers represented by bit-strings such that
arithmetic operations and comparisons can be done in polynomial-time in terms of the
bit-representations. The paradigmatic example of such a model are rational numbers

2The claims between parentheses in the paragraph are based on the author’s experience.
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with the usual ways we operate and compare them, but there are more sophisticated
versions such as Thom’s encoding of real algebraic numbers [131]. In this restricted
framework, the algorithm becomes efficient (in the bit sense) if one can bound the size
of the representations appearing during the execution of the algorithm.

2. We allow the algorithm to use efficiently computable approximations, by which we
mean a set of real numbers represented by bit-strings such that approximations to
arithmetic operations and comparisons can be done in polynomial-time in terms of the
bit-representation. The paradigmatic examples of this approach are fixed-point and
floating-point arithmetic. In this approximate framework, the algorithm becomes effec-
tive if one can bound the precision needed during the execution in order to guarantee
correct approximation of the output.

In our numerical approach, we do the latter (see Chapter 4). Therefore we will be able to
make effective the algorithms that we produce.

Homology groups and Betti numbers

By homology, we don’t mean any fancy homological theory from algebraic geometry,
but the singular homology (with integer coefficients) He(X) = (Hg(X))ken Of @ topological
space X [216; 2.7]. We will refer to this sequence of singular homology groups of X simply
as the homology of X. We note that for simplicial complexes and CW complexes, singular
homology agrees, respectively, with (the more computational) simplicial and cellular homol-
ogy [216; Theorems 2.27 and 2.35].

In the cases we will be dealing with, the homology groups will be finitely generated
groups. Therefore, by the classification theorem of finitely generated Abelian groups [273;
Ch. lll. Theorem 7.7], we have that each homology group Hg (X) is isomorphic to

sk (X) 7
7PN o (5 ——— (0.1)
,.Gj Tki(X)Z

where B (X) and s, (X) are natural numbers and the T ;(X) are positive integers greater
than one such that for all i < s¢(X), Tk i(X) divides Tk i11(X). The numbers B (X), sk (X)
and the T ;(X) are uniquely determined by the homology group Hg (X). We call B4 (X) the
kth Betti number of X, and the vector T (X) := (Tk,,-(X))fi (lx) the torsion coefficients of X.
We will encode the homology groups through these numbers.

The homology groups Hg (X) are very robust topological invariants of X, which are not
only invariant under homeomorphisms, but also under homotopy equivalences. Furthermore,
these topological invariants are “easy” to compute for reasonable spaces, when compared
to other topological invariants. However, this easiness of computation comes at a price. Ho-
mology groups are difficult to interpret in direct topological terms, as it is not clear which
topological information they capture. This situation should be compared with that of homo-
topy groups which are difficult to compute (they are still unknown for spheres [416]), but
which have a direct topological interpretation.

We just briefly recall the interpretation of the first two homology groups and consider
an example. For all topological spaces X, Hy(X) is always free and its rank Bo(X) counts
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the number of path-connected components of X [216; Proposition 2.7]. When X is path-
connected, Hj (X) is isomorphic to the Abelianization of the fundamental group of X, mt; (X),
which consists of all the loops based at some point of X up to homotopy equivalence [216;
Theorem 2A.1].

A precise description of simplicial homology, how to compute it and examples will be
discussed in Chapter 3. For more details, we refer the interested reader to any of the usual
references, such as [216, 346].

Semialgebraic sets

In principle, we could be working over an arbitrary real closed field [70; Ch. 7]. However,
for the sake of concreteness and numerical algorithms, we will limit ourselves to the real
closed field par excellence: the real numbers R from analysis.

A semialgebraic set is a subset of R” which can be obtained after performing a finite
number of unions, intersections and complements of sets of the form

{x eR" | p(x) =0}, {x € R" | p(x) # 0},
{x eR" | p(x) >0} and {x € R" | p(x) = 0},
where p € R[Xy, ..., X,] is areal polynomial. In other words, semialgebraic sets are the sets
which can be described by real polynomials, inequalities and their Boolean combinations.

Example 05*1. The set of polynomials of the form aX? + bX + ¢ with a real zero is a semi-
algebraic set. We can write it as

({(a,b,c) eR? | a=0)Cn{(abc) eRr? b2—4a020})
U({(a,b,c)e[R3|a:0}n{(a,b,c)eR3|b:O}C)
U({(a,b,c)eR*|a=0}n{(a,b,c) eR*| b=0}n{(a,b,c) eR*|c=0}). a

As we cannot feed semialgebraic sets directly to an algorithm, we need to choose a
representation that can be used as an input. We do this by describing semialgebraic sets
with Boolean formulas.

A Boolean formula supported on {ay, ..., a,} is a string ® constructed recursively by
the following rules:

o is a Boolean formula (A)

®, U Boolean formulas = (® A ¥) Boolean formula (N)
o, U Boolean formulas = (® Vv ¥) Boolean formula (V)
(=)

® Boolean formula = (—®) Boolean formula

—_

The atoms of ® are the o; appearing in it and the size of @, size(®), is the number (counted
with repetition) of atoms and operations (A, V and =) appearing in ®. Given sets Sy, ...,S; C
X, ®x(Sy,...,S,) is the set obtained by interpreting o; as S;, A as the set-theoretic inter-
section N, Vv as the set-theoretic union U and — as the set-theoretic complement C in the
ambient set X. When the ambient set X is clear, we omit it.
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Remark 05'1. Taking advantage of the fact that in the operations considered are associative,
we will omit parentheses as long as there is no ambiguity. For example, instead of writing

((((ma1) A az) V(a1 A (mas3))) V ((a1 A a@3) A a4)),

we will write
(may A ag) V(ap A—as) V(ar Aas A ay).

Also, since the binary operations are commutative, we can further write /\ ;¢ ¢; to simplify
expressions of the form ¢, A ¢a A -+ - and similarly with \/; ¢ &;. q

Given a g-tuple of real polynomials p € R[Xq, ..., X,]9, a Boolean formula over p is a
Boolean formula ® supported on

{(pi =0),(pi #0),(p;i >0),(p; 2 0),(pi <0),(p; <0)|i€][q]}.

Given p € R[Xy,...,X,]9 and a Boolean formula ® over p, the realization of (p, ®) is the
semialgebraic set

W(p, @) := o (p; ' (0), p; (RN 0), p;  (R5), p; ' (R2), p; (R<), p; ' (R<) | 7 € [q))) -
(0.2)
A Boolean description of a semialgebraic set is a pair (p, ®) where p € R[Xy, ..., X,]? and
® is a Boolean formula over p such that W(p, ®) = S.

Example 0512, In Example 051, the Boolean description suggested is
(~(a=0)A(b>—dac=0)V((@a=0)A=(b=0))V((@=0)A(b=0)A(c=0)). a

Example 053, Let p € R[Xy,...,X,]9. One can check that

q q
Vo Awi~i0) and A((pi > 0) v (pi < 0))
i=1

~e{><}9 i=1

give descriptions for the same set. However, the first formula has size 29 — 1, while the
second one has size 4g — 1. This shows that not all descriptions of a semialgebraic set are
equivalent from a computational complexity viewpoint, and that we should be careful with
the assumptions and manipulations of Boolean formulas. A

Remark 05'2. Boolean formulas can be viewed as formulas or expressions [82; 27.5] in
the setting of a Boolean algebra. Alternatively, we could have defined a Boolean straight-line
program by changing our description format to that of straight-line programs [82; 4. 7] (also
known as arithmetic circuits when represented as a graph) and everything, including the
proofs and statements in this dissertation, would have carried out in the exact same way.
Although, in general, straight-line programs are more powerful than formulas, it is not
clear that this is the case in the Boolean setting. This is so, because the main example of the
difference, x2", is so due to the ability of straight-line programs to do fast exponentiation.
However, in the Boolean setting, where all binary operations are idempotent, exponentiation
is a useless operation. q
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05'-2 Statement of the problem

With the above definitions and setting, we can now enunciate precisely the open prob-
lem that concerns this dissertation, which has two versions: one involving only the Betti
numbers (B) and other involving also the torsion coefficients (B).

We will write computational problems indicating the input, the output, the complexity
parameters, the desired run-time and the known run-time. The desired run-time indicates
the run-time that the community of experts® in computational semialgebraic geometry hopes
for and the known run-time the best existing time-complexity bound.

Let g, n € N be positive integers, d = (di, ..., dg) € N7 a g-tuple of positive integers,
D :=max{d,,...,dq} and

Palq] :={f e R[Xy,...,X,]9 | foralli € [n], deg f; < d;}, (0.3)

the set of g-tuples f := (f, ..., fq) of real polynomials in the n variables X, ..., X, such
that f; has at most degree d|.

(B): Betti numbers of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s
Output | Betti numbers of W(p, ®): Bo(W(p, @)), ..., Br(W(p, D))
Complexity parameters | s,q,D, n
Desired run-time | poly(s, g, D)*Y(") [25]
Known run-time | s(qD)2°"” [128, 419] (cf. [34; Ch. 11])

(B): Homology of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s
Output | Betti numbers of W(p, ®): Bo(W(p, @)), ..., Ba(W(p, ®))
Torsion coefficients of W(p, ®): T1(X), ..., Tp(X)
Complexity parameters | s,q,D, n
Desired run-time | poly(s, g, D)*Y("
Known run-time | s(qD)2°"” [128, 419] (cf. [34; Ch. 11])

052 Motivation of the problem

There are many ways of motivating a problem. Some of these ways are more appealing
to some people and some to others. Because of this, we don’t present one motivation,
but several of them. We will consider the following four motivations: the applied, because
it may lead to better and faster algorithms in applications; the mathematical, because it will
lead to a better understanding of the class of semialgebraic sets that plays an important
role in many areas of mathematics; the computer scientific,* because it plays a central role
in complexity theory; and the historical,® because the historical development of real and

80r the author, if a citation is not given.

4Among the motivations, this is the most technical one and it requires some familiarity with complexity theory.

5Among the motivations, this is the most literary one and also the longest one. The latter is so because this
historical motivations follows very nearly the development.
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semialgebraic geometry leads “naturally” to this question. The reader is not supposed to
read all the motivations, but only those that appeal to Eir interests.

05%2-1 Applied

In many applications, one is interested in describing the set of possibilities (configura-
tion space) by employing polynomial constraints, i.e., real polynomials and inequalities. This
naturally leads to the appearance of semialgebraic sets in many problems. Without being ex-
haustive in our references, semialgebraic sets play a role in robot motion planning [101, 359,
274], configurations of molecules [274, 294], optimization [75, 66, 235, 267], non-negative
rank [170, 266], etc.

Example 0521 (A robot arm). Consider the following robot arm

X

o oz

where the black thick node o is fixed and the grey nodes x, y and z are only fixed to the
position in the bars. The pink bars oy and xz are of fixed lengths 2 and 3, respectively, and
the red bar ox can change its length from 1.5 until 2.5 (in the picture is at length 2) and rotate
freely between 0 and 90 degrees. The join y is precisely at distance 1 from x and 2 from z.

When the angle and the length of ox vary, the robot arm gets several positions. The
possible configurations of the arm can be encoded as a semialgebraic set. In this case, we
get the following formula

(9 < 4(x? + x3) < 25) A (x1 > 0) A (x2 > 0)
AYZ+y2=4)A By =2x1+21) A (3Ys = 2X3 + 23)
A(X1=21)* + (X2 — 22)* = 9)

where the first line indicate the possible lengths and angles of ox, the second line the length
of oy and the position where y lies on xz and the thirs line the length of xz. A

In many of these applications, once the description as a semialgebraic set has been
obtained, many of the problems reduce to either testing whether the semialgebraic set is
empty (I") or connected, or counting () or sampling (E) connected components. Except for
sampling the connected components, all problems reduce to the more general problem of
computing the Betti numbers of a semialgebraic set (B).

(r): Emptiness of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s
Output | 1 if W(p, ) non-empty, 0 otherwise
Complexity parameters | s,q,D, n
Desired run-time | sq"t'DO(" [25]
Known run-time | sq"t'D9(" [26, 28] (cf. [34; Ch. 14])




8 Josué Tonelli-Cueto 052

(d): Number of connected components of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s

Output | Number of connected components of W(p, ®):
Bo(W(p, @))
Complexity parameters | s,q,D, n

Desired run-time | sq"*!D7PV09(") [25]

Known run-time | sq""'D%("") [30] (cf. [34; Ch. 16])

(E): Connected components of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s

Output | xq,..., XBo(W(p,®)) € W(p, ) s.t.
one and only one x; per connected comp. of W(p, @)
Complexity parameters | s,q,D, n

Desired run-time | sq"*!D7P9(") [25]

Known run-time | sq""'D9("*) [30] (cf. [34; Ch. 16])

As of today, direct applications of computing all Betti numbers of a semialgebraic set
are unknown. However, even though direct applications may never appear, the techniques
developed while solving the problems (B) and (B) might help to provide better algorithms to
any of the problems above or to develop new algorithms for new problems to enter in the
applied world.

052-2 Mathematical

Semialgebraic sets form a very robust class of sets that remains closed under many
mathematical operations: unions, intersections, complements, projections... Because of this
robustness, the shapes that semialgebraic sets take is vast and is yet to be understood. A
solution to the problems (B) and (B) would be an advance in its understanding.

However, in current mathematics, the role of semialgebraic sets is not limited to that
of a class of sets that remains to be understood. Semialgebraic sets have a distinguished
position in many areas of mathematics: mathematical logic [386, 362], where semialgebraic
sets appear in the first-order theory of the reals; real algebraic geometry [47, 70], where
they appear in any classification problem; complexity theory [69, 68], where they are central
to real complexity theory; discrete geometry [332], where they are key to understand the
geometric configurations of a given combinatorial configuration; etc.

Example 05?2 (Realization space of a pyramid). Consider a square pyramid, with vertices of
the base x1, X2, X3, X4 and apex y. The realization space should indicate us configurations
of the points in which their convex hull gives the square pyramid combinatorially. In general,
this means ensuring that (1) all points in a facet lie in the same hyperplane and no other point
in that hyperplane, and (2) the points are in convex position. This leads to a semialgebraic
set.

The first part of (1) is translated into equating determinants to zero and the second
part of (1) together with (2) into imposing positivity condition onto determinants, where signs
come from a global orientation. For example, since x1, xa, X3, X4 lie in the same facet, this



052 Condition and Homology in Semialgebraic Geometry 9

translates into

1 1 1 1
det =0,
X1 X2 X3 Xy

but since y does not lie in this facet this translates, after choosing an orientation of the facet,

1 1 1 1
det > 0.
X2 X3 X4 Y

Now, we only need to add further positivity conditions as the rest of the faces are triangles.
After choosing an orientation, we get

1 1 1 1
det >0
Xi Xji+1 Xiy2 Y

where we interpret the subindices mod 4 and i € [4].

This would give a full description of the point configurations of {x1, x2, X3, x4, y } that
gives the pyramid with a square base. However, the realization space is the set of those con-
figurations up to natural transformations, which are usually either projective transformations,
affine transformations or isometries. In order to do this, we just fix as many parameters as
we can using the considered action.

For example, in our case for the affine transformations, we can just assum*e that x, = 0,
X3 = €1, X4, = €y and y = es. Doing this, we can see that x = (a b 0) and that the
affine realization space of the pyramid is described by

(—a>0)A(b>0)A(l—a—b>0).

Although the realization space in this example is simple, they can be arbitrarily complicated
and have any sequence of Betti numbers a simplicial complex can have [332]. A

In this way, solving (B) and (B) (both in theory and in practice) provides a computational
approach to problems in which the homology of semialgebraic sets plays a fundamental
role. An example of this, in a variant of (B) for curves, can be appreciated in [241] to re-
study explicitly Gudkov’s classical solution to Hilbert’s sixteenth problem for curves of degree
six [208, 209, 210, 207]. We will come back to this in Chapter 5.

052-3 Computer scientific

A counting problem refers to a computational problem involving a function that can be
interpreted as the counting function for some object. The most famous class of counting
problems is #P, but, in (computational) complexity theory, one is also interested in counting
problems coming from other areas beyond combinatorics, such as algebraic geometry. This
has been done extensively by Meer [287, 288], Blirgisser and Cucker [83, 84, 85], Blrgisser,
Cucker and Lotz [89], Scheiblechner [354, 355] (cf. [356]), Burgisser and Scheiblechner [95,
96], Basu and Zell [42, 43], and Basu [24].

There are many counting problems in semialgebraic geometry (among them, (2K) and
(3)), but we will focus on () and (B). The first one counts only components (i.e. “intrinsic
topological holes” of dimension 0), while the latter counts the “intrinsic topological holes”
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of all dimensions of a semialgebraic set. For more counting problems in real and complex
algebraic geometry, see [83, 84, 89].

(?K): Size of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s

Output | #W(p, @) € NU {co}
Complexity parameters | s,q,D, n
Desired run-time | sq"*'D"PoY09(n)
Known run-time | sq"*'D("") [30, 31] [([1)+ dimension]

(3): Euler-Poincaré characteristic of a semialgebraic set.
Input | p € Pq4[q], Boolean formula ® over p of size < s
Output | Euler-Poincaré characteristic of W(p, ®):
X(W(p, ®)) = Z:(~1)B;(W(p, ®))
Complexity parameters | s,q,D, n
Desired run-time | sq"t'(nD)°("
Known run-time | s(qgnD)°(" [22, 186]°

From the classical point of view (see [12, 308] for basic references), in which we restrict
the input of the problem to only integer polynomials, () is FPSPACE-complete (with respect
to Cook-reductions’) [322, 323, 103] and (B) FPSPACE-hard [84], this remains true if we
restrict to complex projective varieties [354]. However, this does not relate these problems
to the usual counting problems beyond the well-known inclusion #P C FPSPACE, and so
this only tells us that counting is harder in semialgebraic geometry than in combinatorics.

From the real point of view, as defined in [69, 68], there is a real analogue of #P, #Pg,
which was introduced in [287, 288] and studied extensively in [84]. However, with this real
analogue, we can only show that (B) is FP*P®-hard (due to the proof of [84; Theorem 7.1]).
In [42, 43], an alternative real analogoue of #P, 4p! , was given. The main difference between
#Pgr and #PH; is, roughly speaking, that the first one counts using the set-theoretic cardinal
and the second one using the sequence of Betti numbers. The most interesting part of this
real alternative analogue to #P is that it gives the following real version of Toda’s theorem
(cf. [389])):

pHE, C pPe
where PH& is the compact version of PHr, meaning that we restrict the domain of each
block of quantified variables and of the block of free variables to the corresponding sphere.

To illustrate the above result in a weaker, but more accessible way, we consider, for
/ > 0, the decision problem GDP/c whose instances are of the form

Qix; € S"7 L, Qix; € S"TY (xq,. .., x)) € W(p, D)

6The result in [186] is needed to extend the algorithm in [22] from closed to arbitrary semialgebraic sets.
However, it should be pointed that historically the substitution was done with the construction in [185] with the
proof of homotopy invariance given by [33, 35]. Nevertheless, the construction in [186] is the most general,
elegant and efficient one.

7By a Cook-reduction from P to P, we will mean that there is a polynomial-time algorithm solving P with oracle
calls to P. When the restriction of polynomial-time is dropped, we will just say Turing-reduction.



052 Condition and Homology in Semialgebraic Geometry 11

where n = Z;Zl ni, Q; € {V, 3}, p € Pqlq] and @ a lax formula over p, which is a Boolean
formula without negations whose atoms are of the form (f; = 0), (f; > 0) and (f; < 0).
This problem is the compact version of deciding quantified semialgebraic formulas with /
alternations, GDP;, where we quantify over R" instead of S$”~! and we don’t put restrictions
on @. In [42, 43], they showed that for fixed / > 0, GDP/C can be Cook-reduced (in the BSS
model of computation) to (B). In other words, (B) is strong enough to decide (in an algebraic
model of computation) a compact version of the first-order theory of the reals. We note that
the opposite reduction is not possible (even if we just ask for a Turing-reduction), because
neither (B) nor (1) can be expressed in the first-order theory of the reals [48, 22].

Putting together what we have said above, the problem (B) is a hard problem to which
many hard problems in both the classical and real setting can be reduced. This problem is
intimately related to the real complexity class 4p! , and a positive solution to it would bring
an inclusion into FEXPTIMER of many known problems and complexity classes in the world
of real complexity.

052-4 Historical®

With the invention of Cartesian coordinates, geometric objects became formulas and
formulas geometric objects. This event, which marked the beginning of algebraic geometry,
allowed an “easy” algebraic understanding of many of the geometric objects of the past, such
as conics. However, with this new understanding, hordes of new “monstrous” algebraic-
geometric objects invaded the Greek classical world. Where once the harmony of Plato’s
shapes ruled, algebraic varieties created chaos with all their possible (reall) shapes.®

This chaos took place even in the world of those algebraic varieties that we can draw
and see. At the beginning of the 20th century, there was a very modest success in classifying
the zoo of shapes of real algebraic curves and surfaces. The biggest successes were the un-
derstanding of curves of degree five (and partially those of degree six) by Harnack [215] and
Hilbert [222] and of surfaces of degree three by Schlfi [358], Zeuthen [423] and Klein [259].
In this context, in 1901, Hilbert formulated his famous 23 problems [224, 223], and asked, in
the first half of the sixteenth one, how real algebraic smooth curves in P? and real algebraic
smooth surfaces in P3 can look like (up to isotopy). The problem put special emphasis on
curves of degree six and surfaces of degree four.

Despite the early work in the problem by Ragsdale [320] and Rohn [337], the main
collective effort went into other Hilbert’s problems. The solution to the seventeenth problem
led to the abstract theory of real fields by Artin and Schreier [13]. However, the main focus
went on the real version of Hilbert’s tenth problem, which is just nothing more than (I),
motivated by the threat of undecidability created by the works of Gddel [192], Church [127,
126] and Turing [394]. Fortunately, Tarsky [386],° and later also Seidenberg [362], showed

8A warning is in order here. The history here will be told from a subjective perspective, starting in the 20th
century with Hilbert’s problems (specially the first half of Hilbert’s sixteenth problem [224, 223]) and ignoring
the development of non-real algebraic geometry. The arrow of time in this history will be the understanding of
shapes (and topological invariants) of real algebraic and semialgebraic sets. For alternative narratives, see [157,
349, 32, 408].
9From time to time, the author will take these poetic licenses in this historical narrative to keep it entertaining.
10Although published in 1951, Tarski's work goes back to the 30s. The delay was due to the war.
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that the first-order theory of the reals was decidable. Unfortunately, the Second World War
brought the progress in the problem to a halt.

The Soviets'' against Hilbert’s sixteenth problem

With the war over, the only mathematical community that took the challenge of the first
half of Hilbert’s sixteenth problem was the Soviet one. And the narrative here has to be
complemented by the account of the Soviet protagonists themselves in [206], [148] and
[408].

In the 50s, continuing with the work of Petrovskii before the war [311], Petrovskii and
Oleinik developed bounds for the Euler characteristic of real smooth algebraic sets [312] and,
later, Oleinik extended these results to sums of Betti numbers [303, 304]. This brought, for
the first time, a restriction on the possible topologies of general real algebraic sets.

In the 60s, Gudkov, following a suggestion of Petrovskii, attacked Hilbert’s sixteenth
problem for curves of degree six. After more that ten years and a famous mistake, ' Gudkov
completed the classification of real projective algebraic curves of degree six [208, 209, 210].
Meanwhile in the West, Milnor [292] and Thom [387] rediscovered the results of Oleinik on
the sum of Betti numbers [303, 304], although providing new proofs which applied also to
the singular case.

In the 70s, the major breakthrough in the dissipation of the chaos in real algebraic ge-
ometry occurred, motivated by Gudkov’s congruence hypothesis [209]. In 1971, Arold [7]
gave a proof of a weaker version of Gudkov’s conjecture using techniques from complex al-
gebraic geometry, in the flavour of Thom’s proof of Oleinik’s bound [387] and Klein’s proof of
Harnack’s inequality [260]. In a sudden boiling of ideas, Rokhlin developed this relation be-
tween real and complex algebraic geometry enormously. One year after Arnold, he gave the
first proof of Gudkov’s congruence hypothesis [341];'® just four months afterwards, he gave
another simpler proof of a generalization of Gudkiv’s congruence hypothesis [340, 342];'4
and he completed this by exploring even further the relation between the topology of the real
part, its complexification and the relative position [343, 344, 345].

With this explosion of ideas, the 70s and 80s were very successful for the Soviet school
of mathematics. The congruences and inequalities were generalized further by Fiedler, Gud-
kov, Kharlamov, Krakhnov, Nikulin and many others [179, 211, 247, 248, 249, 250, 299].
These works on restrictions culminated with full classifications by Kharlamov, Nikulin and
Viro for new degrees at the end of the 70s and the beginning of the 80s. In the zoo of
curves, rigid'® classifications were produced by Kharlamov for curves of degree five [253]
and by Nikulin for curves of degree six [298]; and the isotopic classification for curves of

" The term Soviet, instead of Russian, is necessary as not all Soviet mathematicians are Russian. For example,
Olga A. Oleinik was from Ukraine and Viadimir A. Rokhlin from Azerbaijan.

"2This mistake refers to the fact that the original classification of Gudkov in 1954 did not contain the curve
of type 1(5) [ 5, (one oval with five ovals inside and five outside). The later correction of this mistake was
surprising, because this type of curve was believed not to exist by Hilbert [224]. The discovery of this mistake
and its correction by Gudkov was possible thanks to Morozov [318].

"8However, this proof had a mistake that it took eight years to be discovered and corrected by Marin [284].

14Furmily, of congruences mod 16 for Hilbert’s 16th problem

15Rigiol isotopy as opposed to topological isotopies, require that the isotopy can be carried out by deforming
the coefficient of the defining polynomials and not just the zero set.
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degree seven was obtained by Viro [411, 406, 405]. Further, the isotopic classification of
curves of degree eight was almost'® completed by Viro [411, 406], Shustin [371, 372, 373]
and Polotovskii [317]. In the zoo of surfaces, Viro gave constructions of M-surfaces in every
degree [401]. The partial results on (smooth) surfaces of degree four by Utkin [396, 395,
397, 207] were completed. The isotopic classification of surfaces of degree four was com-
pleted by both Kharlamov [246, 251, 252] and Nikulin [298] and the rigid classification by
Kharlamov [254].

The emergence of computational semialgebraic geometry

While the Soviet mathematical school was climbing the Everest that the first half of
Hilbert’s sixteenth problem still is, the Western schools of mathematics started to leave the
more pure approaches to semialgebraic geometry, as exemplified by [70], to turn their atten-
tion into the existence of efficient algorithms in semialgebraic geometry. This was motivated
by the realization that, although in principle every problem expressible in the first-order the-
ory of the reals was solvable by [386, 362], the algorithms by Tarski and Seidenberg would
probably solve the problem only after the universe was over, even for small size problems.

At the end of the 70s, these efforts condensed in the so-called Cylindrical Algebraic
Decomposition (CAD) developed independently by Collins [128] and Wthrich [419] which
gave a complexity of O(qD)zo(") to the decision of the first-order theory of the reals. There
were some hopes at the time that the lower bounds of Fischer and Rabin [181] could be
improved to show the optimality of CAD."” Around ten years later, Arnon, Collins and Mc-
Callum [9, 8] added some improvements to CAD; Ben-Or, Kozen and Reif [46] showed that
the computation could be performed in exponential space; and the lower bounds obtained
by Weispfenning [417] and Davenport and Heintz [145] made all the preceding work appear
optimal.

However, the Soviet school of mathematics still had one more surprise in store. On the
same year that the lower bounds by Weispfenning [417] and Davenport and Heintz [145]
appeared, Grigoriev and Vorobjov [203] (cf. [414, 413]) and Grigoriev [202] (cf. [200]) de-
veloped the critical points method, building on previous work in the same decade by Chis-
tov [125], Chistov and Grigoriev [121, 122, 123, 205, 124] and Grigoriev [198, 199] on the
first-order theory of the complex numbers. In contrast to CAD, the run-time of the critical
points method is O(qD)”/ where [ is the number of quantifier alternations in the first-order
formula. This parameter was very present in the examples of [417, 145].

In the coming decades, both CAD and the critical points method were successively
improved. CAD was improved by Hong [225, 226], Collins and Hong [129] and many oth-
ers [108]. At the beginning of the 21st century, Brown [78] improved CAD for the plane, and
new examples were obtained by Brown and Davenport [79] which showed the importance
of the order chosen in CAD. The critical points method was improved by Canny [103, 105],
by Heintz, Roy and Solerné [219], by Renegar [326, 327, 328] (cf. [325]), where n' is sub-
stituted by [];(n; 4+ 1); and finally by Basu, Pollack and Roy [26, 28], where g and d are
separated and the exponent of g is given exactly without Landau notation. However, despite

16Only the existence of six isotopy types remain to be resolved.
7«The result of Fischer and Rabin suggests that a bound of this form is likely the best achievable for any
deterministic method”. [128]
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these incredible achievements, the main focus of computational real algebraic and semial-
gebraic geometry started to shift to the computation of topological invariants at the end of
the 80s.

“Turing” goes topological

At the end of the 80s, it was clear that the classical classification project of Hilbert was
difficult. After more than three decades of work, this project was completed for the cases
originally considered by Hilbert. However, the progress in terms of the degree was small: the
classification was only done for curves of degree at most seven and for surfaces of degree at
most four. It is not clear if this was the motivation, but around this time, after the successes
of CAD and the critical points method, a substantial amount of algorithms addressing the
computation of topological invariants emerged, especially concerning connected compo-
nents ([1) and the isotopy types of curves.'®

On (), the progress started soon after the development of the critical points method.
The problem received an impetus from the applications thanks to the work of Canny [101]
showing the relation of the problem to robot motion planning. Soon after this, Canny [103,
102] developed the notion of a roadmap of a semialgebraic set that will play a fundamental
role. At the beginning of the 90s, a cluster of results showed that () could be solved in
singly exponential time. Initially, Canny [107, 104] and Heintz, Krick, Roy and Solerné [218]'°
showed that, among other geometric-topological problems, deciding if two points belonged
to the same connected component could be done in singly exponential time. Then, almost
at the same time, Grigoriev and Vorobjov [412, 204], Canny, Grigoriev and Vorobjov [106]
and Heintz, Roy and Solernd [218, 220] (see also [201]) showed that () could also be done
in singly exponential time. By the end of the 90s and beginning of the 2000s, the complexity
was improved to the more explicit O(qD)O(”Q) by Basu, Roy and Pollack [27, 29, 30]. The
last significant progress in this problem was by Safey el Din and Schost [352, 353] and
Basu, Roy, Safey El Din and Schost [40] and Basu and Roy [39] at the beginning of the
2010s. They showed that for algebraic sets, the exponent O(n?) can be substituted by a
quasilinear factor in n, n-polylog(n). As of today, extending this complexity bound to general
semialgebraic sets is seen as the biggest open problem in computational semialgebraic
geometry concerning ().

On the isotopy type of real curves, there were some algorithms by Polotovkii [316] at
the end of the 70s and Gianni and Traverso [188] at the beginning of the 80s. However,
the first algorithm for smooth curves with a complexity estimate was given by Arnon and
McCallum [10, 11] relying on their previous work with Collins on CAD [9, 8]. For any kind of
curves, it was the algorithm by Roy and Szpirglas [348, 350]. The coming two decades saw
an improvement race of the algorithms and their complexity estimates by long sequence
of works: Cucker, Gonzalez-Vega and Rosello [138], Feng [178], Gonzalez-Vega and El
Kahoui [195], Gonzéalez-Vega and Necula [196], Eigenwillig, Kerber and Worper [171], Ker-
ber [243], Diochnos, Emiris and Tsigaridas [158], Cheng, Lazard,Pefiaranda, Pouget, Rouil-
lier and Tsigaridas [112], Kerber and Sagraloff [244], Diatta, Roullier and Roy [154], Mehl-

8|t should be clear that such algorithms contribute to the goal of solving the first half of Hilbert’s sixteenth
problem in general and to the computational understanding of the topology of real algebraic varieties.
19Um‘or’[umately, the pelotita and the boldn didn’t get chosen as standard terminology in [34].
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horn, Sagraloff and Wang [289, 290], Kobel and Sagraloff [261], and Diatta, Diatta, Rouillier,
Roy and Sagraloff [152]. All this sequence improved the complexity roughly from O(d23) to
O(d"%).

(B) as the next step in this history

As we have seen above, with the coming of the new century, there were substantial im-
provements in algorithms solving (M) and determining the isotopy type of curves. Regarding
Hilbert’s sixteenth problem, after the Soviet solution of the cases mentioned explicitly in the
problem, the progress has been more modest. However, the chaos of shapes of semialge-
braic geometry is far from becoming an understandable cosmos.

From the geometric perspective, the classification of curves of degree 8 is still open,
despite recent work by Chevallier [120] and Orevkov [306]; new congruences, by Mikhalkin
[291] and Viro and Orevkov [291, 409]; new assymptotics, by Orevkov and Kharlamov [307];
new examples, by Itenberg and Viro [411, 229, 230, 232] and Brugalle [80]. And, in the case
of surfaces, the situation is more dramatic, the Betti numbers are not even completely under-
stood: it is still not known whether there is a surface of degree five with 24 or 25 connected
components. The best example is until now by Bihan [55] and Orevkov [305] with 23 con-
nected components, which improved on the one before by Kharlamov and ltenberg with 22
components. Further, new limits on the existing construction techniques by Renaudineau
and Shaw [324] suggest that new ideas are needed.

From the computational perspective, the situation is more hopeful. On the one hand,
there were developments on both the algorithms for isotopy of curves, which we have already
discussed, and also some generalizations to surfaces and curves in 3-dimensional space of
these algorithms. On the other hand, the exploration on how to compute new Betti numbers
started.

At the beginning of the 2000s, algorithms were developed for the computation of topo-
logical invariants and piecewise linear approximations®® of surfaces in space. The first al-
gorithms were developed by Fortuna, Gianni, Parenti and Traverso [184], Fortuna, Gianni
and Luminati [182], Cheng, Gao and Li [113], Fortuna, Gianni, Luminati and Parenti [183],
and, at the end of the 2000s, the first one with a complexity analysis by Alberti, Mourrain
and Técourt [3], which was based on previous work by Mourrain and Técourt [293]. The
situation for algorithms computing piecewise linear approximation of curves is similar.?’

In parallel to these developments, one should not ignore the developments coming
from other methods in computational geometry (cf. [71]). At the beginning of the 90s, Sny-
der [376, 377] made substantial work in the isotopic piecewise-linear approximation of
curves. In the 2000s, the problem for curves and surfaces was dealt by Boissonnat, Cohen-
Steiner and Vegter [72, 73], Plantinga and Vegter [315], Stander and Hart [382], Boissonat
and Oudot [74], and Cheng, Dey, Ramos and Ray [115]. Although the focus of many of
these approaches was more on the correctness and applicability to general functions, not
only polynomials, many of these methods were fundamental in motivating developments in

20This was necessary, because it is not clear, like it happens in the case of curves, which combinatorial
structure captures the topology of the istopy type of a surface. A torus can be knotted with itself.

213ee the works by Alcazar and Sendra, Gatellier, Labrouzy, Mourrain and Técourt [187], El Kahoui [173],
Diatta, Mourrain and Ruatta [155], and Cheng, Jin and Lazar [114].
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computational semialgebraic geometry.

At the end of the 90s, Basu [21, 22] developed the first algorithm computing more
topological information (precisely (3)) than just the Oth Betti number in singly exponential
time. By the middle of the 2000s, this was later extended to the first two Betti numbers
by Basu, Pollack and Roy [33, 35] and then to the first £ Betti numbers by Basu [23].
However, in the last work, the complexity is doubly exponential in €. In this period, one
should definitely mention that the constructions by Gabrielov and Vorobjov [185, 186] were
essential for extending algorithms from closed semialgebraic sets to general semialgebraic
sets.

In the last years, Basu and Riener [36, 37, 38] have applied successfully many of the
symbolic techniques to the case of symmetric semialgebraic sets described by symmetric
polynomials.

At this moment of historical development, (B) is not just important because it is the last
step in a sequence of improvements, but because, as of today, (B) resists to all technical
improvements coming from CAD and the critical points method. A solution to this problem, in
singly exponential time, would require new ideas in computational semialgebraic geometry.
These new ideas will give surely a better understanding of the topology of semialgebraic sets
and so contribute to the goal of the first half of Hilbert’s sixteenth problem.

053 State-of-the-art and contributions to the problem

We will recall the state-of-the-art concerning (B) and (B) and then explain our contribu-
tions to the problems, which we present in this thesis.

0531 State-of-the-art regarding the problem

In the state-of-the-art regarding (B) and (B), we should distinguish between the symbolic
and numerical approaches. We will recall the existing symbolic methods for approaching (B)
and their limits, and then explain the existing numerical method, the grid method, the dif-
ferences that it has with respect symbolic methods and what has been the progress so far
regarding (B) and (B).

Symbolic approaches

On the symbolic side, the best existing algorithm for (B) is the algorithm by Basu [23]. It
computes the first £ Betti numbers of a semialgebraic sets in (qD)”Om -time. This algorithm
is a product of a long sequence of steps, which can be read in the historical motivation,
but whose immediate ancestors are the algorithms by Basu [21, 22] and Basu, Pollack and
Roy [33, 35] and the constructions by Gabrielov and Vorobjov [185, 186]. We explain the

ideas present in these works.

Remark 0531. In the case of complex smooth varieties, Scheiblechner [357] showed that
one can solve (B) in singly exponential time and parallel polynomial time. The reason that
the techniques of [357] don’t apply to the corresponding version of (B) is because they are
based on de Rham cohomology which misses the torsion coefficients. However, it would be
interesting to study whether the techniques in [357] could be generalized to the real setting,
as they differ from the usual ones in computational semialgebraic geometry. 9
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The first paper [21, 22], by Basu, dealt with bounding the homology groups of semi-
algebraic sets. This was done by a certain covering and a Mayer-Vietoris argument that
allowed to bound the Betti numbers of the union in terms of the Betti numbers of the in-
tersections. Additionally, the techniques developed for the bound are used to compute the
Euler-Poincaré characteristic of semialgebraic sets (3) in singly exponential time. The main
idea for this was to make use of the addititivity of the Euler-Yao characteristic and the fact
that the Euler-Poincaré characteristic agrees with the Euler-Yao characteristic for closed
subsets. In this way, one could compute the Euler-Poincaré characteristic of S = (J4 So,
with S5 not necessarily closed, using (under the right hypotheses) the identity

X(S) = > X'(So)

where y is the Euler-Poincaré characteristic and x* is the Euler-Yao characteristic. In or-
der to compute it for each S, ideas coming from the critical points method and auxiliary
constructions are used.

The second paper [33, 35], by Basu, Pollack and Roy, applied a similar strategy, to that
of [21, 22], to compute the Oth and 1st Betti numbers. The main result is the construction,
in singly exponential time, of a cover by contractible semialgebraic sets. Then, in a variation
of the Nerve’s theorem, they show that for a closed set S = |J, S« With the Sy closed
and contractible, one can compute B, (S) by counting the connected components of the
pairwise intersections of the S, and B1(S) by counting the connected components of the
pairwise and triplewise intersections of the Sy. This is proven using the so-called Mayer-
Vietoris double complex and its associated spectral sequence. Again, the computation of the
connected components (M) of the possible intersections is done using the existing algorithms
for this problem (such as [30]).

Additionally, in this paper, they gave the first proof that a general semialgebraic set can
be substituted by a closed semialgebraic with the same topological invariants. They did this
showing that the construction of Gabrielov and Vorobjov [185] also preserved the homotopy
type. This idea is fundamental, as almost all of the techniques with the name “Mayer-Vietoris”
only work with closed subsets. Interestingly, the construction [185] was developed to bound
the sum of the Betti numbers of general semialgebraic sets, which was an open problem at
the time.

The third paper [23], by Basu, takes the algebraic-topological techniques in [33, 35]
to the limit. The main idea is to consider recursively contractible covers of the intersections
of elements of the previous covers. Then, using a suitable truncation of the Mayer—Vietoris
double complex and its associated spectral sequences, one is able to recover the first few
Betti numbers of the desired set. The doubly exponential explosion in the number of com-
puted Betti numbers is just a consequence of how the inductive construction of contractible
covers works.

One can see that in these works the main constructions are algebraic topological. The
main part of these algebraic topological arguments deal with how to get the Betti numbers
out of the constructed contractible cover (in [35]) when the pairwise intersections are not
contractible. With the exception of the contractible cover in [35], the main part of the ap-
proaches try solving (B) by reducing, through algebraic topological computations, the prob-
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lem to cases that one can deal with by using the usual algorithms in semialgebraic geometry,
which mainly are algorithm dealing with () and (E).

Numerical approaches

At the end of the 90s, a new approach of computation was introduced in real algebraic
geometry: the numerical one, to which the methods of this thesis belong. We introduce
below briefly what make the numerical algorithms numerical instead of symbolic. We also
give a short historical development as this was not included in the historical motivation??
and we finish discussing the ideas of the grid method, which is the form that until now the
numerical approach has taken within real algebraic and semialgebraic geometry.

Numerical algorithms, condition numbers and condition-based complexity In
contrast to the symbolic approaches, the numerical approaches deal with inputs which are
assumed to be inexact and with which the performed operations perform inexactly. This
makes numerical algorithms different from symbolic ones, since it is possible to have ill-posed
inputs for which the numerical algorithm cannot give a correct answer (since for these inputs
arbitrarily small perturbations dramatically change the answer to the problem). In addition
to this, their complexity appears to depend not only on the size of the input, but also on a
parameter called condition number which measures the sensitivity of the problem, not the
algorithm, to variations in the input.

The condition-based complexity is a form of parameterized complexity in which the
focus is to understand, in terms of the condition number of the data, the complexity of the
numerical algorithm: number of operations used, precision needed... In this way, one can
understand why the algorithm works fast on certain inputs and slow or not at all on other
inputs.

However, one drawback is that we cannot know how the complexity depends, in gen-
eral, on the size of the input, which is necessary to compare the algorithm with symbolic
algorithms, for which this is usually the case. To solve this issue, the usual approach, going
back to Goldstine and von Neumann [194], Demmel [150] and Smale [374], is to consider a
“reasonable” probability distribution on the input-space and to study the probability distribu-
tion of the condition number. This will give a probabilistic complexity analysis that either holds
on average (average and smoothed complexity) or with high probability (weak complexity)
that is easier to compare with the worst-case complexity estimates of symbolic algorithms,
as no condition number appears in the bounds.

We will come back to these ideas in more detail in chapters 1 and 4.

Some historical remarks about the condition-based complexity paradigm The
condition-based complexity paradigm is not new and goes back to the beginning of the the-
ory of computation itself. In the middle of the 20th century, condition numbers were intro-
duced for the resolution of linear systems, respectively, by Turing [393]% and von Neumann

22\We should note that the use of an approach to a problem does mean that such approach is part of the
historical motivation of the problem. In other words, the historical motivation to approach numerically () and (E)
is not numerical.

233ee the notes of the 1970’s Turing Lecture by Wilkinson [418] for a first-person account of this discovery.
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and Goldstine [297].

In the 80s, Demmel [149, 150] developed the framework of conic condition numbers
setting one of the most general frameworks of the condition-based complexity paradigm.
However, it was not until the 90s when condition-based complexity reached its age of ma-
jority by leaving the realm of numerical linear algebra. On the one hand, Shub and Smale [366,
367, 368, 370, 369] introduced condition numbers into the study of homotopy continuation
methods for solving complex systems of polynomials leading to the formulation of the so-
called Smale’s 17th problem [375]. The problem was solved successfully in the next two
decades by Beltran and Pardo [45], Burgisser and Cucker [86] and Lairez [272]. On the
other hand, Renegar [329, 330, 331] introduced condition numbers into linear program-
ming.24 This work was later further expanded by Cheung and Cucker [116, 117, 118].

Together with the grid method, which we present below, the condition-based complex-
ity paradigm has become pervasive. Much of the current knowledge was condensed in the
book [87] by Burgisser and Cucker, where a complete exposition of the main ideas of the
field and further historical comments can be found.

The grid method?® In the realm of real algebraic geometry, condition numbers en-
tered for the first time through the works of Cucker and Smale [143, 144] and Cucker [133].
They considered the problem of feasibility of a set of real polynomial equations. The basic
idea of the algorithm was to iteratively refine a grid until either one could certify the existence
of a zero, using Smale’s a-theory, or that the polynomial was either positive or negative,
using Lipschitz properties of the polynomial. Because of this, the numerical approach in real
algebraic geometry is called grid method.?®

The introduction of the grid method was motivated by the observation that the then-
existing symbolic methods were not likely stable due to the use of large matrices that had
to be inverted.?” The way in which the grid method avoids this is by substituting inverting
large matrices by inverting a lot of small matrices, one at each point of the grid. Also, another
advantage of the grid method is that it is parallelizable, as one can perform the operations
at each point in the grid independently.

Ten years after, the grid method was further developed by Cucker, Krick, Malajovich
and Wschebor [139, 140, 141]. They apply it to count solutions of zero-dimensional real
polynomial systems. This problem is a particular case of (X) in which one restricts inputs
to polynomial systems with the same number of equations and variables. The idea of the
algorithm is as in [143, 144, 133], to iteratively refine a grid until certain condition holds.
However, the main advancement, specially in [140, 141], was a geometric interpretation of
the condition number in this setting [140] and a derived probabilistic analysis [140, 141].

240ne should mention however the previous work of Goffin [193] that introduced condition numbers in a
limited setting of linear programming.

25For comments on the grid method by one of its main characters, Cucker, see his surveys [134] and [135].

26\We observe that the expression ‘grid method’ has a wide meaning. In this thesis, it will just refer to any
method based on the introduction of grids on a certain space and operations at each one of its points. Although
it should be clear that, in this sense, the grid method was definitely not invented by Cucker and Smale, its
application to real algebraic and semialgebraic geometry definitely was.

27The correctness of this intuition was later confirmed by the theoretical results of Noferini and Townsed [302].
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The interaction of the grid method and the computation of topological invariants (of
projective real algebraic sets) started with Cucker, Krick and Shub [142]. In [142], they
incorporate techniques from topological data analysis such as the reach and the Niyogi-
Smale-Weinberger theorem [300; Proposition 7.1], relating them to the existing condition
number of a real algebraic variety. Among the most interesting results in [142] is the first
explicit lower bound on the reach in terms of a parameter depending on the description of
the variety: Smale’s y-invariant.

The generalization (from algebraic sets to basic semialgebraic sets) and simplification
of the grid method applied to the computation of homology was done by Burgisser, Cucker
and Lairez [88]. In this work, sharper bounds and easier proofs were introduced for many
of the results in [142] and the results of topological data analysis in [300]. However, the
main progress occurred due to mainly two technical improvements: a bound for the reach
of an intersection in terms of the reach of intersections of the boundaries, and a method
for choosing the approximating points in the grid based on an inclusion-criterion and not an
inclusion-exclusion scheme.

The main similarity between the above numerical algorithms with the symbolic ones
in [33, 35, 23] is that the homology is computed by computing a cover of the set. The main
difference lies in the fact that the covers in [33, 35, 23] are difficult to describe (each element
is a semialgebraic set with its own description) and they are not topologically nice (i.e., they
do not satisfy the Leray property), while the covers produced by the grid method [142, 88]
are easy to describe (they are just a union of balls) and are topologically nice (i.e. they satisfy
the Leray property). This property of the covers produced by the grid method is what allows
numerical algorithms to use easier algebraic topological tools to compute the homology and
S0 to be faster.

053-2 Contributions to the problem

Our contributions to the problem are, mainly, to produce both algebraic topological and
semialgebraic tools to compute the homology of semialgebraic sets using the grid method,
which allows to give the first algorithm that solves (B) (and so also (B)) in singly exponential
time with high probability. This was done in [91, 92] together with Blrgisser and Cucker. An-
other contribution, which belongs to the different problem of computation of piecewise linear
isotopic approximations, is to provide a complexity analysis of an algorithm, the Plantinga-
Vegter algorithm. We show that this algorithm works in average polynomial time. The impor-
tance of this result lies in the fact that it opens the door, for the first time ever, to numerical
algorithms based on the grid method to be shown to run in finite expected time. This was
done in [136] together with Cucker and Ergur.

(B) in weak singly exponential time

In [91], the main addition to the grid method was the development of a method to
construct a simplicial complex with the same homology as a closed general semialgebraic
set. This was done by developing functorial methods in topological data analysis. With this
method, we can construct the simplicial complexes just by constructing it for the atoms and
then combining the “atomic simplicial complexes” in the same manner the formula of the
semialgebraic set combines the atoms. Another crucial step was a quantitative version of
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Durfee’s theorem [163].

In [92], the main contribution was to develop a quantitative version of the Gabrielov-
Vorobjov theorem [186]. In this quantitative version, the original inequalities <, meaning
sufficiently small in a precise sense, were substituted by simple strict inequalities of the form <
and a global upper bound linear in the inverse of the condition number. Here, the application
of the Mather-Thom theory introduced in [91] is necessary. With this explicit version, one
can just apply the construction of Gabrielov and Vorobjov [186] to pass from the general
case to the closed case.

One can see a certain similarity with the symbolic history. In a way, the results in [91]
are analogous to those in [23] in the sense that both deal with how to get more topological
information out of covers. The reason why [91] leads to a better run-time with high proba-
bility is that the covers of the grid method are simpler and so they can be combined in an
easier way than those used before in [23]. Similarly, the core results of [92], the quantitative
Gabrielov-Vorobjov theorem, are completely analogous to that used in [33, 35] to pass from
the general to the closed case. The main difficulty for the grid method is that we cannot
leave the realms of the real numbers, while in the symbolic methods the fact that the original
inequalities work only for sufficiently small numibers is not relevant algorithmically as one can
work with infinitesimals to go around this issue.

Despite all possible similarities, the underlying methods of the symbolic algorithms in [21,
33, 35, 23] are fundamentally different from those of the grid method. This is the main reason
behind the progress in [91, 92] that has brought (B) down to weak singly exponential time.
These ideas will be exposed in Chapters 1, 2, 3 and 4.

Adaptive grid method

The motivation for the work in [136] was the observation that a condition-based com-
plexity analysis of the Plantinga-Vegter algorithm [315], which computes an isotopic piece-
wise-linear approximation of implicit curves and surfaces, would be possible. The existing
complexity analysis by Burr, Gao and Tsigaridas [98, 99] gave only complexity bounds expo-
nential on the degree. The progress in [136] relied on a condition-based approach and the
continuous amortization technique developed by Burr, Krahmer and Yap [100] and Burr [97].

Interestingly, subdivision-based methods such as the Plantinga-Vegter algorithms can
be interpreted as adaptive grid methods. The main difference with the usual grid method is
that the grid is not refined globally, but locally depending on whether at a given point we
need a finer grid. In this way, the main contribution in [136] was that, for the first time, it
showed that an algorithm in real numerical algebraic geometry could have finite expected
time. Moreover, the probabilistic estimates of [136] didn’t come from integral geometry, but
from geometric functional analysis like those or Erglr, Paouris and Rojas [175, 176]. This
allowed for a probabilistic bound using probability distributions more general than the normal
distribution.

However, the most important contributions in [136] are in the future possibilities that it
suggests. On the one hand, it shows how the condition-based complexity can be applied
to analyze subdivision-based methods. On the other hand, it has opened a roadmap to the
development of a numerical algorithm that not only solves (B) in weak singly exponential
time, but in average singly exponential time. We explore this possibility in Chapter 5.
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AT Analytical index

The following analytical index briefly presents the content of each chapter. It is intended
to give an overview of the topics and structure of the thesis.

Chapter 1

The condition number for problems involving semialgebraic sets measures how transversely
the zero sets of the polynomials defining it intersect. In the special case of spherical alge-
braic sets, this condition number is well-behaved and has good properties, both geometric
and probabilistic. In the general case, this properties are transmitted in the homogeneous
case, almost immediately, and in the affine case, after some effort. A probabilistic analysis
of each of these notions of condition numbers is performed for normally distributed random
polynomials.

Chapter 2

When the condition number is finite, certain deformations of the semialgebraic set can be
done with explicit constants and inequalities, depending linearly on the inverse of the con-
dition number itself. The main tools are differential topology and Mather-Thom theory. For
well-posed cases, quantitative versions are given for Durfee’s theorem and the Gabrielov-
Vorobjov construction.

Chapter 3

The homology of a closed set can be computed using clouds of points (i.e., unions of balls).
A measure for the quality of the approximation is the Hausdorff distance. There is a geomet-
ric property of the set, the reach or local feature size, which controls the size of correctly-
approximating clouds of points (Niyogi-Smale-Weinberger theorem). The reach behaves well
with respect to intersections, analytic and basic semialgebraic subsets. The homology of
a cloud of points can be computed by considering only the intersection relations of the
cover (Nerve theorem). It is enough to consider the pairwise intersections of the cover (Attali-
Lieutier-Salinas theorem).

Chapter 4

Numerical algorithms are a valuable tool for solving problems. There is an algorithm for com-
puting the homology of semialgebraic sets which is singly exponential with high probability.
We do a condition-based and a probabilistic complexity analysis of this algorithm. The nu-
merical algorithm have parts that are highly parallelizable and it is numerically stable.

Chapter 5

One can perform the probabilistic analysis for the condition number of random polynomi-
als that are not normally distributed. Adaptive methods can provide faster numerical algo-
rithms: this is shown with the Plantinga-Vegter algorithm and the Han covering algorithm.
We propose a natuneTka program with questions and problems regarding the computation
of topological invariants and the first half of Hilbert sixteenth problem.
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Appendix F

The properties of the real zero set of a real system of polynomials is governed by the number
of non-zero terms in the system and not necessarily the degree of the terms. The classical re-
sults on fewnomial are still far from the resolution of Kushnirenko’s hypothesis. Kushnirenko’s
hypothesis is true on average. Fewnomial systems with very few terms have with very high
probability no real zeros. Problems related to a possible probabilistic theory of fewnomials
are stated.

Apéndice M

El tema principal de esta tesis es el calculo numérico de grupos de homologia de conjuntos
semialgebraicos. Yendo término por término, tratamos de dar una imagen global de cual es
el tema a una persona que no esté familiarizada con las matematicas.
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There was nothing there now except a single Commandment. It ran:

ALL ANIMALS ARE EQUAL
BUT SOME ANIMALS ARE MORE EQUAL
THAN OTHERS.

George Orwell, Animal Farm: A Fairy Story

Condition numbers
for the homology of semialgebraic sets

Like the animals in George Orwell’s Animal Farm [Q11], all inputs of a given size are
equal, but some inputs are more equal than others for a numerical algorithm. The condition
number, which is a measure of numerical sensitivity with respect to the problem, lies at the
hearth of this difference.

In general, a condition number of an input with respect to a problem measures how
much the answer to the problem changes depending on how much the input changes.
However, we are dealing with problems such as (B) and (B) where the output is discrete.
Because of this, in these problems, the condition number should bound the inverse of max-
imum possible variation of the input such that the output does not change.

In this chapter, we will introduce the condition number K,¢ that will be the basis of our
condition-based complexity analyses. To do this, we deal first with the homogeneous and
spherical case where the usual condition-based framework for real algebraic geometry has
been developed.

First, we introduce the Weyl norm, which will be the “ruler” we will use to measure
the variations in the space of polynomials, and the class of KSS random polynomial tuples;
second, we introduce the condition number of an homogeneous polynomial tuple; third,
we introduce the intersection condition number of an homogeneous polynomial tuple; and
fourth and last, we introduce the intersection condition number of a polynomial tuple in the
non-homogenous case. In all the cases, we will discuss the properties and deduce the cor-
responding bounds, deterministic and probabilistic, of all the introduced condition numbers.
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15* Homogeneous polynomials and Weyl norm

Fix g,n € Nandd = (di,...,dy) € N9. Consider the space of d-homogeneous
polynomial q-tuples

Halq] := {f € R[Xg, X1, ...,%y]? | f; homogeneous of degree d;} 1.1)

and let D := max;c(q) d;. Let X* := X7 - - - X3 and write every f; as f; = 3 4|=q; fi,aX*, SO
that f; « denotes the a-coefficient of f;. The Weyl norm is the norm given by

q -1
dj
;nﬁ-nav and [Ifillw =\ D (a) fia 1.2

|a|=d;

17 llw ==

where (‘é{’) = ﬁ is the multinomial coefficient. Note that the Weyl norm comes from

an inner product, which we will write as

q d: -1
<f,g>W:Z Z ((xl) ﬁ',otgi,a (1-3)

i=1 |a|=d;
for f, g € Halq].

Remark 151, Although the definition above and the results below are stated over the real
numbers, the analogous results hold over the complex numbers, when we substitute the the
Weyl norm by its complex version. This will only be important when we prove Lemma 1528,
whose easiest proof is by passing through the complex version of the results here. 19

15'—1 The three main properties of the Weyl norm

There are three reasons why the Weyl norm is used. First, it allows one to write nice
formulas for the point-wise evaluation and derivation of polynomials. Second, it has an or-
thogonal invariance, which means it does not favor any direction in the space where we
evaluate homogenous polynomials. Third, it controls the norm of the evaluations of the poly-
nomials and their derivatives.

Evaluation and derivation as polynomials
Let x,v € S” be such that v € T,S"” and i € [q], then define the polynomial tuples

evl, == (x,X)%e; € Hylq] and dev, = \/di(x,X)% (v, X)e; € Halq] (1.4)

where e; € RY is the vector with one in the ith component and zeros in the rest. We view X
as the vector (X, . .., X,)* and we write (-, -) for the standard inner product of R”.

Proposition 15'1. Let f € Hy[q] and x,v € S" such that v € T,S". Then

. . 1
(f,evi)w = fi(x) and (f,dev, ,)w = —=Dxfi v.

\/Fi

In particular, ||eviliw = 1, ||devi , lw = 1 and (evi, devi ,)w = 0.
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Proof. By the multinomial formula,

n d;
. d:
evﬁ( = (Z X,'X,') e = Z (GI)XGXG e/

k=0 |a|=d;

and so, by (1. 3),
(Foeviw = > Fax® = fi(x).

|a|=d]

Similarly, one can see that

; 1 di\ [ < _
deV;,v:ﬁ lz (O()(Zakx“ eka)Xa e/,

o|=d; k=0

-

and so, by (1. 3),

(f, dev;,v)w
1 - 1 1
= — f; x| = — O figX® % | v = —D,fi v,
Vi |0(|Z:d,- I,a (kZ:O Vdi /;) |0(|Z:d; - A

where the last equality holds because v is orthogonal to x. The last claim follows easily from
computing the evaluation and the derivative. |

Corollary 1512, The set {eV, | x € S”, i € [q]} linearly spans Hg|q].
Proof. By Proposition 1511, the orthogonal complement of this set is
{f € Hy[q] | forall x € S", f(x) = 0}.

So we only have to show that this is the zero subspace. However, the only homogenous
polynomial which vanishes in all points of the sphere is the zero polynomial. Therefore the
claim follows. m|

Corollary 153, [87; §16.3]. For every x € S", there is an orthogonal decomposition
Halq] = Cx(Halq]) ® Lx(Halq]) ® Rx(Halq])
where

(R) Rx(Halq]) := {g € Halq] | g(x) = 0, Dxg = 0},

(L) Lx(Halq)) := {& € Rx(Halq])* | g(x) = 0} = span(dev,, | 7 € [q], v € S" N x™),
and

(©) Cx(Halq)) = {g € Rx(Halq])* | Dxg = 0} = span(ev, | i € [q))

Further, {ev\ }ie(q) is an orthonormal basis of Cy(Ha[q)) and, for {v;}je[s an orthonormal
basis of T,S" = x*, {evﬁ(,vj }ielqljeln IS an orthonormal basis of Ly (Hy(q]).
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Proof. Fix an orthonormal basis {vj}je[n] of x*. Then, by Proposition 151, we have that
{ev;,dev;’vl, .. .,dev;,vx },-e[q] is an orthonormal system. Now, also by Proposition 151,
we have that Ry (Hg[q]) is its orthogonal complement, and so

s+ -devi, i€ [q]).

Thus Cx(Halq]), Lx(Halq]) S span(ev;,dev;,vl, .. .,dev;’vx | i € [q]). Now, by Proposi-
tion 1511, we have that

Rx(Ha[g))* = span(ev’, dev

Cy(Halq)) L span(dev,,. | i € [q]. j € [n]) and Ly(Ha[q]) L span(ev | i € [q])
and

Cx(Halq)]) 2 span(eV’. | i € [g]) and L (Halg]) 2 span(dev;’vj |7 €[q],j € [n]).
This concludes the proof. m|
Remark 1512, When Hy[q] is clear from the context, we will just write Cy, Ly and R, instead

of Cx(Halq]), Lx(Halq]) and Rx(Ha[q])- )

Orthogonal invariance
The natural action of O(n + 1) on R” extends naturally to an action on Hg[q] given by
pre-composition. Given f € Hy[q] and u € O(n + 1), we define

Y = f(ux) (1.5)

where uX is the multiplication of the vector X = (X, . .., X,)* with u. Note that this means
that we are viewing the action of O(n + 1) on Hg[q] as a right action.

Proposition 15 4. [87; Theorem 16.3]. Let f, g € Hy[q] and u € O(n + 1). Then

(f“, g“)w = (f, g)wand ||p"llw = llpliw-

Proof. Itis enough to prove that for some generating subset S C Hylq], the claim holds for
all f, g € S. Let S be the generating set of Corollary 1812 Forallevl € Sandu € O(n+1),
(evi)” =ev! , . Therefore for all ev),ev}, € Sand u € O(n + 1),

((ev)"s (ev)))hw = (V0 8V, 1w
If i # j, this equals zero. If i = j, then, by Proposition 151, it equals

WXty % = (x, )
where the equality follows from the fact that v is orthogonal. Hence for every ev;, evﬁ, € Sand

u € O(n+1), the value of ((ev’,), (ev’})“)w is independent of u and so equals (eV/,, ev’})w,
as desired. m|

Remark 15*3. We note that, in contrast with the unitary action on complex homogeneous
polynomials, Hg[1] is not an irreducible O(n + 1)-module. This means that the Weyl norm
is not the unique, up to scalar multiplication, orthogonally invariant norm on Hg[1]. More-
over, one can check that the Weyl norm on Hyl[1] is not equal to the Ly-norm, ||plls =

Exesn|lp(x)]|?, up to any scalar, because while any two monomials are orthogonal with
respect to the Weyl inner product, this is not true with respect to the Ly inner product with
the exception of the linear case. |
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Corollary 1515, [87; §16.3]. Let x € S" and consider the orthogonal decomposition of
Hg|q] of Corollary 15*3. Then for all u € O(n + 1),

Cy = Cu-1y, Ly = L1, and Ry = Ry-14.

In particular, the orthogonal decomposition of Hgy[q] of Corollary 15*3 remains invariant
under those orthogonal transformations that fix x.

Proof. This is immediate from the definitions of Corollary 153 and the fact that the action
of O(n + 1) on Hgy[q] respects the Weyl inner product, by Proposition 154, O

Evaluation and derivative bounds
Recall that any space of matrices R#*b has an inner product, called Frobenius inner
product, given by
(M, M)g := tr(MM*) (1.6)

for M,M € R#*Y. Associated to this inner product, we have the Frobenius norm ||M||r.
Another possible norm is the operator norm which is given by

IM[| = max [[Mv| (1.7)
vesn

Recall that for all M € R#*? ||M|| < |[M[.
Proposition 1516. Let x € S". Consider the linear map
Ry : Halq] — R9*(n+2)
f i (mg(f) ER}((f)) — (f(x) AZIDLF(1- xx*))

where
Vd,
Ag = tel . (1.8)
NeA

Then R, is an orthogonal projection whose image is given by
im Ry = {(z,M) € RI x R | Mx = 0}.

Proof. Consider an orthonormal basis {v/},e[,,} of x*. From this basis, one can construct
{ex, exv], ..., ekvi}tkelq Which is an orthonormal basis of {(z,M) € RY x R+ |
Mx = 0}. In the coordinates of this latter basis, by Proposition 1511, we have that R, (f) is

written as
((evi,f)y (devh,.fy -+ (devi,.f) - (evi,f) (devi,.f) --- (devi,.f))".

PAZE X,Vp?

Since {evk,devk, ,...,devk , }xelq is an orthonormal system by Proposition 151, the

claim follows. O
Corollary 157, Let f € Hy[g] and x € S". Then
IF OO < (I lw and [| A5 DxfIl < [Iflw

where || - || is the operator norm and Aq as in (1. 8).
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Proof. ER?( . f — f(x) is an orthogonal projection, by Proposition 15*6. Therefore the
first inequality holds. Forallv € T,S"NS", f A;lDXf v is an orthogonal projection,
because, by Proposition 1516, it is a composition of orthogonal projections. Therefore the
second inequality follows. O

Recall that the geodesic distance on S", dists, is the distance given
dists(x, X) := arccos(x, X). 1.9)

One can see that dists(x, x) is the length of the shortest path inside S” joining x and x,
which is why it is called “geodesic”.

Corollary 158 (Exclusion lemma). Let f € Hy[q] and x, x € S". Then
I (x) = £ (%)l < VDIIf |l dists(x, X)
where dists is the geodesic distance on S”.

Proof. Lety:[0,1] — S” be a constant speed geodesic going from x to x. Then

I (x) = FOOIl =

1 1
/ Dy f ¥'(t) dt SdiSts(Xa)?)/ IDyo fll dt,
0 0

where we used that ||y’(t)|| = dists(x, x) for a constant speed geodesic whose domain
is the interval [0,1]. We have |[Dy)fll < VD|IAZ'Dyfll < VD, due to the bound in
Corollary 1517, This concludes the proof. O

However, we can prove an stronger version of the above corollary where we bound the
operator norm of all derivatives. For it, we need to sharpen the bound of the operator norm of
Dy f in order to be able to apply an inductive argument. Recall that D, f denotes the tangent
map of f as a function on R"**, while D, f the tangent map as a function on S”.

Proposition 1519. Let f € Hy[q] and v € S". Then Dyf v € Hq_1[q] and
IBxf vllw < DIl llws
where Ag is as in (1.8). Further, |A7'Dxf vllw < VDIIfllw.

Proof. By Proposition 1514, we can assume without loss of generality that v = e,. Indeed,
let u € O(n + 1) be such that uey = v, then

1A Dxf vilw = [I(Ag'Dxf ueo)”llw = llAg" Dxf* eollw < I1F¥llw = [IF [lw-

. 1 .
Let My, = (‘;")2X°‘e,-. Then {My, | 7 € [q], |a| = d;} is an orthonormal basis of
Haqlq]. By direct computation,

(Mioy a0 D e0) = (Mg X0, F),,

Hence the linear map £ : H[q] — Hg_1[q] given by f > Dxf v can be written as

Z M{:I—]l,a (d/Mil—]l,aXO) .
i,0
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Now, {d; MG| 1.0X0 | i €[q], |&| = di—1}isanorthogonal system, although not an orthonor-
mal one, such that for each 7 and a, [|d;MY;_, Xoll < d; < D. Therefore ||.£L|| < Dand sothe

main claim follows. For the last claim, note that <d Mg 1 05 Ac‘llf> = <VdiMf:|—]1 05 f>
w ’ W
and proceed analogously using the latter expression. m|

Recall that for a k-multiinear map £ : RM+! x ... x R™*! — RY, its operator norm
is given by
L := max {||L(v,...,vk)|| | vi € S™, ..., vk € S"™}.

Corollary 15'10. Let f € Hy[q] and x € S". Then, forall k > 1,

1 = 1 (D
D f f
st < e
where || - || is the operator norm for multilinear maps.
Proof. Fixvy,...,ve € S", then
ATBF (v vi)|| = HA—lﬁkm v )H
)( 1s- -5 Yk W K d YX 1s--+5 Yk W
D-k)---(D-2 =
< 5 )| << 82K 072 HAdlef(vl)
k! w
(D—-k)---(D-2)VD 1 (D
< 1w = —=|_ | Ifllw
k! VD \k
by applying inductively the (first) inequality of Proposition 1519 in the second line and the last
inequality in the last line. Then Corollary 1517 and maximising over v, . . ., v finishes the
proof. O

15*—2 Random polynomials in Hy|q]

Among all distributions in RN, there is one that occupies a special place: the normal
distribution. Recall that the normal distribution centered at x € RN and with standard devi-
ation o > 0, N(x, o), is the absolutely continuous probability distribution on R” with density

function
1 _lz=x|?

The standard normal distribution is the normal distribution centered at 0 and with typical
deviation 1. A Gaussian random vector ¥ € RN is a random vector distributed according to
the standard normal distribution N(0, 1). To indicate that a random vector x € RN has the
normal distribution N(x, o), we will simply write x ~ N(x, o).

This distribution has many properties that make it special:

1. Itis invariant under orthogonal transformations, and so it does not favor any direction
in space. l.e., if x is a random vector such that x ~ N(0,c0) and u € O(N), then
ux ~ N(0, o).
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2. Ifx € RN and y € RV are independent random vectors such that ¥ ~ N(x, o) and

n ~ N(y, G),tllell
(x) N((X), )
D y

3. If ¥, € RN are independent random vectors such that x ~ N(x,oc)and vy ~ N(y,¢)
and A, p € R, then Ax + up ~ N (AX + py, VA?c? + p2g2). In particular, ¥ + y ~

N (x + y,4/0% + gg).

4. If x € RN is a random vector such that x ~ N(x, o) and P : RN — RN is an orthogonal
projection, then Px ~ N(Px, o).

5. If x € RN is a Gaussian random vector, then x/||x|| has the uniform distribution on the
unit sphere SN71, U (SN1).

6. Among all probability distributions on RN with the same mean and covariance matrix',
the normal distribution is the one having maximum entropy [132; Theorem 9.6.5]. In
other words, it is the distribution to choose when only the mean and covariance matrix
of a distribution are available.

In a finite dimensional real vector space with an inner product, we can define analogously
the normal distribution N(x, o) by considering the corresponding norm instead. This will allow
us to talk about Gaussian random matrices where the inner product is the Frobenius one and
about random polynomials, by considering the Weyl inner product of Hg[q]. This motivates
the following definition.

Definition 15'1. A KSS random polynomial tuple f is a random polynomial tuple f € Hgy[q]
with an absolutely continuous distribution whose density function is given by

2
1 g
2

81(F) 1= G

Remark 15t4. The terms “KSS” is an acronym for Kostlan-Shub-Smale, in honor of the
creators of the distribution. See [265], [166] and [367]. |

We finish with a proposition that will be useful later, since it gives the probability distri-
bution of the norm of a KSS random polynomial tuple. Recall that the x2-distribution with m
degrees of freedom, x,%,, is the probability distribution of the square of the norm of a Gaussian
random vector ¥ € R™. One can easily show that its density function is given by

1 n_y _t

— t2 e 2
2m/21(m /2)

for t > 0, where I'(s) := /Ooo xS"te X dx is Euler’s T function.

The covariance matrix of a random vector x € RN is the matrix E (x — Ex)*(x — Ex). If x ~ N(x, o), then 21
is the covariance matrix of x.
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Proposition 15'11. Let x € R™ be a Gaussian random vector. Then the density function
of ||x|| is given by

for t > 0. Further, for t > 2,

t2
P (||x|| > t+ \/E) <el" 7,

Proof. For the first claim, we only apply the change of variables theorem of integration.
For the second one, note that

1 (t +Vm) T s
= e .
2m/2-1T(m/2) eVm(t+vm)

8 (t + V)

Hence

P (Il = ¢ + Vm) = / 8 ¢ (s + V) ds
/ (s +m)T
2m/2= 1F (m/2) eVm(s+Vm)

1 (s +m)"T
¢ 2M/2710(m/2) eVm(s+Vm)

g2
2 ds

Se2

m2 [ sz le®
=e ? — ds
Vm(t+ym) 2M/2Im~1 T'(m/2)

m+l 4

m—t2 e S 2 e’
<e:? / P} ds
1 2m/2-1m™a T'(m/2)

.2 Pm_H m 2
:e% (2) < ° etz

om/2-1m ™ D(m/2) 25 Tim"™T

where the last inequality follows from I' (24 )/F(%) <I'(Z+1)/1(%) = 2. Tofinish the
proof, we just observe that ———— < e O
22t Im™1

152 k: a condition number for spherical algebraic sets

When can arbitrarily small perturbations of a polynomial tuple f € Hy[q] alter the local
topology of the zero set Zg(f) around a point x € §”? This can only happen at a singularity,
since all regular zeros look locally the same and all non-zeros also look the same. Motivated
by this, one defines the following local condition number.

Definition 1521. Let f € Hy[q] and x € S”, the local condition number of f at x, k(f, x),
is the quantity in (0, o] given by
f
K(f, x) = 1w (1.10)
JIFCOI? + 0g(AF1D,F)?

where oy is the gth singular value, Ag asin (1.8) and Dyf : T,S" — R the tangent map.
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Since one expects the global topology not to change when the local topology does not
change at any point, this motivates the following definition.

Definition 1522, Let f € Hy[q], the global condition number of f, k(f), is the quantity in
(0, oo] given by
K(f) := max k(f, x). (1.11)

xeSsn

In the Definition 1521, we note that, in the denominator of k(f, x), || (x)|| controls how
near is f of having a zero at x and cq(A:/laDXf) how near of not having full rank D4 f is.
Thus k(f, x) is large when f is near of having a singular zero at x. The following proposition
is a weak formalization of this observation. Recall that the zero set Z(f) := f71(0) of a
map f : M — R9, where M is a smooth manifold, is called regular if for all x € Z(f),
rank Dyf = q.

Proposition 1521. Let f € Hy[q]. Then Z5(f) := {x € S" | f(x) = 0} has a singularity
at x € S" iff k(f, x) = oo. In particular, ZS(f) is regular iff x(f) < . O

In the next chapter, we will prove the following theorem which justifies the name condi-
tion number at least from the point of view of computing the homology groups.

Theorem 1522, [ et f € Hy[q] be suchthat k(f) < oco. Thenforall g € Bw(f, k() |F]lw),
He(Z3(F)) = He(Z5(g))-

We will focus in the properties and possible bounds of the condition number. We will
finish with a discussion, showing that many possible alternative definitions are computation-
ally equivalent. Let us note that the definition of this condition number is the consequence of
a long sequence of works [143, 144, 133, 139, 140, 141, 142, 88, 91, 92], so our choice of
properties is motivated by what this experience has shown to be important in the application
of k as a condition number.

152—1 Fundamental properties

There are roughly four main properties of the local condition number that will be funda-
mental in our work. We go one by one.

Regularity inequality
The regularity inequality relates how near is x from being a zero of f with how near of
being singular D, f is. This will be used whenever we need to justify that we can compute

the pseudoinverse of Dy f near the zero set of f. Recall that for a surjective linear map A,
the pseudoinverse, A', is the linear map given by

AT = A*(AA") T (1.12)
for which AAT = [ and ATA is the orthogonal projection onto (ker A)*.

Proposition 1523 (Regularity inequality). [91; Proposition 3.6]. Let f € Hy[q] and x €
S”. Then either

£ Ol 1 0q(Ag'Dxf) 1
> or > .
Ifllw — V2k(f, x) 17 [l V2k(f, x)
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In particular, if \/§K(f , X) Hljlr;ﬁv)v” < 1, then Dyf : T,S" — RS9 js surjective and its pseudoin-

verse Dy f T exists.

Proof. Assume that neither of the alternatives holds, then

L (IFGOI | (oa(AdDxf))\* I T
K(F.x) (||f||w) *( 1 Tl )<\/2K<f,x>2+2x<f,x>2‘K<f,x>

which gives a contradiction. Hence at least one of the options should hold. The last claims
follows from the fact that a matrix A € R7*("+1) is surjective iff 54(A) > Osince g < n. O

1st Lipschitz property

The first Lipschitz property of the local condition number tells us that k(f, x) ™| f|lw as
a function of f is a Lipschitz function. This guarantees that sufficiently small errors in f do
not affect dramatically the condition number. Extending by continuity, we take (0, x) = oo
and ||0]lwk(0, x)™! = 0.

Proposition 1524 (1st Lipschitz property). Let x € S". Then the map

Halq] — [0, )

| llw
H —_—
k(f, x)

is 1-Lipschitz with respect to the Weyl norm.

Proof. By Definition 1521 and Proposition 156, we can write

17 Tl
K(f, x)

where the right-hand side norm is the usual Euclidean norm. Then, by the triangle inequality,

Il NI llw

K(f,X) K(f,X)

We know that oy is 1-Lipschitz with respect to the operator norm. Therefore

Il NI llw

K(F, X)  k(F, x)
= |[(s%cr = AL ie = )| < 198(F = Pl < F = Fllw = distuc£. F)

= | (R9(F), oq(RL(F))]

< H(mg(f) —RY(F), og(RL(F)) - Gq(‘ﬁi(m)n'

< H(mg(f) — R (F), | RL(F) —‘Ri(f)”)H

where, in the second line, the equality follows from the linearity of R, the first inequality from
the inequality between the operator and the Frobenius norms, and the second inequality
from Proposition 1516, which claims that R is an orthogonal projection. The proposition is
proven. O

Corollary 1525, The map

Halq] — [0, ]

is 1-Lipschitz with respect to the Weyl norm.
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Proof. Note that f +— ||f|jw/k(f) is defined as the pointwise minimum of a family of non-
negative 1-Lipschitz functions. Hence it is 1-Lipschitz. m|

Corollary 1526. Let f € Hy[g] and x € S". Then k(f, x) > 1and k(f) > 1.

Proof. By applying Proposition 1524 to f and 0, we have

| llw | F llw 110]lw
<o)~ R~ k0| < I Ol = 1
which gives the desired claim. |

2nd Lipschitz property
The second Lipschitz property of the local condition number establishes the Lipschitz-
ness with respect to the second argument.

Proposition 1527 (2nd Lipschitz property). [88; Proposition 4.7]. Let f € Hy[q]. The
map

is D-Lipschitz with respect to the geodesic distance on S”.
To prove this property, we will use the following lemma.

Lemma 1528. Let f € Hylq] and A € RUTVX(™1) be an antisymmetric matrix. Then
Dxf AX € Halq] and ||Dxf AX|| < DIIA[[[If [l

Proof of Proposition 1527. Let u be any orthogonal transformation taking x to x. Then we
have that k(f, x) = k(f", x). Therefore, by the 1st Lipschitz property,

Vo v o i w F we =
k(F,x) k(£ x)| Nfllw [k(f.x)  k(FLx)]— lIfflw
where we have used that ||f]| = ||fY|| by Proposition 154,

Consider now the constant-speed path v : [0,1] — O(n + 1) obtained by doing the
planar rotation between x and x from the zero angle to the full angle dists(x, x). By the

chain rule,

d —
— £ = Dy u’ ()X = Dx(FUD) u(t)"v’ ()X

dt
1
/ if“(t) ds
. dt

Now, note that ||u(t)*u’(t)|| = ||u’(t)|| = dists(x, x) and that u(t)*u’(t) is antisymmetric,
because u : [0,1] — O(n + 1) is a planar rotation going from the angle zero to dists(x, x).
Hence, by Lemma 1528, ||f — fY|jyw < D dists(x, X)||f|lw and the proof concludes. O

Therefore

1
I = Fllw = = /0 IDx(F®) u(e)*u’ (£)X]],,, ds.

W



152 Condition and Homology in Semialgebraic Geometry 37

Proof of Lemma 15%8. The present proof could be carried inside the framework of he reals,
but it would be too tedious to do s0.? This is why we will work for this proof over the complex
numbers. Let u € U(n + 1) be the unitary transformation such that

V—1sg
uAu = =: V-1S.
V_ISH

Then
(Dxf AX)U = Duxf AuX = Duxfu U*AUX = Dxfu ( V—lS)X

and so, by the complex version of Proposition 1514, we can assume, without loss of gener-
ality, that A is already a purely imaginary diagonal matrix.
By direct computation,

n
(Oxf (V=18)X)i = ) V=1fiq (Z orksk) X = > V=1f oo, s)X
|a|=d] k=0 |a|=d]
where we use that both o and s are real in the last equality. Thus
d: -1
= 1
IBxf (V=IS)XIiy = ) (a) [l (e )%
1,x
By Holder’s inequality, |[{a, s)| < ||a|l1]|s|le < DJ|S||, and the proof concludes. O

Condition number theorem
The local discriminant set at x is the set

Yalqlx == {g € Halq] | g(x) =0, rankDxg < q} (1.13)

and the discriminant set the set

Salq) = [ J{Zalqle | x € 87} (1.14)

Once can see that Proposition 1521 can be reformulated as saying that

Ydlqlx = {& € Halq] | k(g, x) = oo} and Xq[q] = {g € Halq] | k(g) = oo}

This claim can be made stronger by relating the condition number to the distance of f to
these sets. This is the so-called condition number theorem, which gives a nice geometric
interpretation of the condition number.

Theorem 1529 (Local condition number theorem). [87; Proposition 19.6] and [88; The-
orem 4.4]. Let f € Hy[q] and x € S". Then

Il
distw(f, Ed[q]x)

where distyy Is the distance with respect to the Weyl norm.

K(f, x)

2This is so, because over the complex numbers we can put A in diagonal form without loss of generality, but
this is not true over the reals, since its eigenvalues are either zero or imaginary.
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Ifll : - -
Proof. We only have to show that k(f, x) < WE\Z[:HX)’ since the other inequality follows

directly from the 1st Lipschitz property (Proposition 1524) by letting the other polynomial
tuple to be in X4[q]«.
Let v € (ker A7'Dxf)* N'S” be such that

|AG'Dxf V]| = 0q(Ag'Dxf)
and f be the orthogonal projection of f onto {evi,dev/ , | i € [q]}*, ie.,
fi="f— Z(f, evi Yevl — Z(f, devl, ,)dev, ,
ela) fef)

where, by Proposition 151, (f,ev') = fi(x) and (f, dev;’v) is the ith component of
Ay'Dxfv. ]
By the above, this means that f(x) = 0 and that

AF'Dxf = Ag'DLF (1 - vv?¥)

which has gth singular value equal to zero, because v was chosen to be the singular vector
associated to the gth singular value of A;lDXf. This means that k(f, x) = oo and so
fe Ya[q]x. Further, by Proposition 151,

distyy (f, f) = Z (f,ev yev' + Z (f,devi ,)dev, ,
=r fetal "

= JIFCOI2 + 185D f v

Il
k(f, x)

which implies that distw/(f, X4[q]x) < ||f |lw/k(f, x), as desired. O

Corollary 15210 (Global condition number theorem). [87; Theorem 19.3] and [88; The-
orem 4.4]. Let f € Hqlq]. Then

_ Iiflw
distw(F, Salq)

where distyy Is the distance with respect to the Weyl norm.

K(f)

Proof. Just notice that disty (f, Xq[q]) = Minyesn distw(f, X4[q]x)- O

In view of the above theorem, we can interpret Theorem 1522 as saying that no changes
in topology will occur as long as we don’t cross X4(q].

Higher derivative estimate

The higher derivative estimate relates Smale’s y with the condition number. Its useful-
ness relies on the fact that while for computing Smale’s y one needs to evaluate all higher
derivatives of f, this is not necessary to evaluate the condition number. For f € Hy[q] and
x € S, let us define

17 llw

— _IfllwlD.fTA 1.15
5o (A DL7) | f [lwlIDxf " Agll ( )

u(f, x) =
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where Agisasin(1.8). Wenote that, in general, k(f, x) < p(f, x), with equality if f (x) = 0;
and that |f\/_”|f|| <1, u(f, x) < V2k(f, x), by the regularity inequality (Proposition 1523).

Recall that D, f refers to the tangent map T,S” — R9 and D, f to the tangent map
TR — RY. The notion of Smale’s gamma gives information about the magnitude of the
higher derivatives of an analytic function.

Definition 1523, Let f : R™ — RY be an analytic function and x € R™ be a point. Then
Smale’s gamma of f at x, Y(f, x), is the non-negative real number given by

L
-1

D fTD f (1.16)

?(f’ X) = SUp
k>2
—k
where D, f is the tensor formed by the derivatives of order k of f, T is the pseudoinverse
and || - || is the operator norm. By convention, Y(f, x) = co when D f is not surjective.

Together with this notion, we introduce the notion of Smale’s projective y, which is
Smale’s y with the derivative substituted by the derivative on the sphere.

Definition 15%24. Let f € Hy[g] and x € S". Then Smale’s projective gamma of f at x,
Y(f, x), is the non-negative real number given by

Dfo (1.17)

Y(F.x) == sup
k>2

—k . .
where D, f is the tensor formed by the derivatives of order k of f,  is the pseudoinverse
and || - || is the operator norm. By convention, y(f, x) = oo when D, f is not surjective.

One can easily see that, in general, Y(f, x) < y(f, x). The higher derivative estimate,
relates this quantity with p.

Proposition 15211 (Higher derivative estimate). [87; Theorem 16.1] and [88; Proposi-
tion 4.1]. Let f € Hy[g] and x € S". Then

_ 1
V(F.x) < ¥(F.x) < 5D Tu(f, X).
Proof. By Definition 1523, it is enough to bound for k > 2. Now,
H—D FIDLF|| < ||Duf 2| —AdD f

< - (®)||f|lw, by Corollary 15*10. Thus
D3 K

—k
where H 5 AdDy

1

ﬁ 1 (D k-1
<o
D2 \k

Now, p(f, x) > k(f,x) > 1, by Corollary 1526, and so p(f, x)F1 < u(f, x) for k > 2.

Also, one can easily check that
| D))ﬁ
sup | — <
k>2 (D% (k

1— .
’EDXfTDﬁf

3
D2,

N | =
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since for k > 3,

1 (D)) D\ F1 DK = D+ D3
< <[=] = < <
el =) =[5 =

1
(KNFT ~ (gk-1)FT 2

However, in our case, the following variant will be more useful since we will consider
sums of homogeneous polynomials and constants.

Corollary 15212. [92; Proposition 4.5]. Let f € Hy[q] and x € S". Define

fs = (f,ZX?—l). (1.18)
i=0

Then
o h ) < Dl o1 2 Dhucr o M
Y(fs, x) < H(F, x) + D2 p( ’X)W+1- (1.19)
Proof. By direct computation,
Duf (1) if k =1
2{x, uy) ’ ’
52f(u us)
Difs(un,. . ue) =4 0, itk =2,
2(u1, us)
—k
DXf(ul,...,uk)) o
0 ’ '

Using this equality for K = 1 we deduce that kerﬁxfg = T,S" N kerD,f = kerD,f. Let
_ 1
V = (kerDyxf)* C TxS". Then (ker Dxfg) —V+Rxand, foralA € R,

Dyfs(v +Ax) = (DXf(V) - AAgf(X))

1.20
2\ ( )
where Dy f (x) = Aﬁf (x) follows from Euler’s identity for homogeneous functions.
By explicitly inverting the map in (1. 20), we obtain
— t t
O, ) V] = D, (w _ —Agf(x)) b
t 2 2
Thus
5t DuF Tl (g, uy) — 820D FAZF(x) 4 Lt2)y g =2,
= S
(Dxfs)' == (un, - )

—k
+D, f
Dxf T2 (un, .

CoUg), if k> 2.
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Applying the triangle inequality and Definition 1523, we obtain
— 1 1
Y(fs, %) < ¥(F, ) + SIDLFT A ()]l + 3,

which implies

v f(x
27(fs,x) < DEu(F,x) + DEu(F 0Tl 11
w
where the first term in the right-hand side follows from the higher derivative estimate (Propo-

sition 15211) and the second from the relations

Fl
1D FTA2F (Il < 1D4F T Aalll AalllIF ()| = ||f||w||Dxf*Ad||DzW

and the definition of p. This finishes the proof. |

152-2 Bounds: worst-case and probabilistic

We present two kinds of bounds for the condition number, which try to go around the
fact that the possible maximum of k is infinite. The first one puts a restriction onthe f € Hy(q]
we consider, like restricting the coefficients to be integers of at most a certain size, and looks
for a bound that holds for all f satisfying the restriction for which k(f) is finite. The second
one considers a random f € Hgy[q|, such as a KSS random polynomial tuple, and looks for
a tail bound for the random variable k(f). Each of them represents a different philosophy in
the complexity of numerical algorithms.

Gap theorem for integer inputs

The idea of bounding the condition number in terms of the bit size goes back to Rene-
gar [331]. The underlying philosophy is to translate the condition-based estimates of the
condition-using complexity theorist to something that the classical computer scientist can
understand, like a worst-case bit complexity estimate. In linear programming, the bound
by Renegar (see [87; Proposition 7.9] and associated remarks) was successful in providing
bounds giving the desired complexity for a series of algorithms using condition numbers.
However, in our case, the bounds obtained will not allow us to get good bit complexity
estimates for the algorithms under study.

Theorem 15213. Let f € Hy[q] be such that all its coefficients are integers of absolute
value at most H. Then either x(f) = oo or

k(f) < V2DNH (22—1+T"D—3+3”H\/N)

Proof. The proof relies on a generalization of Polya’s theorem by Jeronimo, Perruci and
Tsigaridas [236; Theorem 1]. To apply their theorem to our case, we note that

IFlw)* 2 T 2
DY) > min ( f AZID,f )
( ry) = min (IFCOI + 0q(a5'Def)
To obtain the minimum in the right-hand side as a minimum of a polynomial function, consider
themap g : (x,v) = ||f(x)]|> + |[v*Dxf||*> and minimize it in the compact semialgebraic

set C given by

(14n+q)(4D)*+7Hd

— O(DHN)O®" ™7,

n

Z:x,-2 =1, Zq:d;v,? =1.
i=1

i=0
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Then

2D 1w 2> min_g(x,v),
K(f) " (x,v)eC

since o4(Dxf) = min{||Dxf v | ||v]| = 1, x L v}. Now, a direct computation and a rough
estimation shows that g is a polynomial of degree 2D whose coefficients are integers of
absolute value at most D?H2N. Applying [236; Theorem 1], we obtain

1nt —(14n+q)21t+9(2D)1+1+49

min g > (24— : "(D2H2N)(2D)1+”+q)

(x,v)eC

and so the result follows after minor computations and estimations, since for the given f,
we have ||f|lw < HVN. o

Remark 15%1. The above bound is novel and it was a missing ingredient in the existing theory,
when compared to the condition-based complexity framework applied to other problems.
It clearly does not lead to single exponential bounds of k, which controls the run time of
the algorithm; although it can be used to guarantee that log k, which controls the precision
needed by the algorithm, is singly exponential in n, polynomial in the degree D and linear in
the bit size log H of the coefficients of f. |

Remark 1522, [236; Theorem 1] is a very general result that we apply it to a very particular
setting. It would be interesting to see, if using the technigues in [236] and in [235], one can
provide a better bound such as the one in the question below.

Open problem a. Let f € Hg[q] be such that all its coefficients are integers of absolute
value at most H. Is it true that either k(f) = oo or

k(f) < O(DHN)Z" "2

A bound like the above would give the grid method the same worst case complexity as
CAD, for integer inputs. Also, it would make the precision to be linear in the logarithm of the
degree, instead of polynomial in the degree. 1

Probabilistic bounds

The problem of computing a bound for k(f) for restricted f € Hy|q] is that a bad f can
spoil the full basket. In the same way that we don’t judge a community by its worst members,
we should not just judge a parameter by its worst value. Behind this way of thinking, trying to
understand the full statistics of a behaviour and not just the worst behaviour, lies the founding
idea of considering probabilistic bounds of k. We give two ways of arriving to a probabilistic
bound: via integral geometry and via geometric analysis.

We observe that there are two frameworks to obtain probabilistic bounds: the average
and the smoothed framework. The difference between them relies on the randomness model
used to obtain tail bounds of the condition number. In the average framework, introduced
by Goldstine and von Neumann [194], Demmel [149] and Smale [374], one considers a
random polynomial tuple f € Hy[qg] which has a normal or uniform distribution. This random
input is suppose to represent the “average” input that one will find and so the usual behaviour
that one will find. In the smoothed framework, introduced by Spielman and Teng [380], one
considers a random polynomial tuple f, € Hgy[q] of the form {5 := f + og with f € Hy[q]
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fixed, o > 0 and g with a normal or uniform distribution. The random f, represents an input
f with some random perturbation, whose magnitude is controlled by o. In this way, one
hopes to get a bound on the worst probabilistic behaviour of a randomly perturbed input.
One should note that as o grows, one recovers the average framework.

Via integral geometry The integral geometric approach relies heavily on the condi-
tion number theorem (Corollary 15210) and the geometry of the ill-posed set.

Theorem 15214. [87; Theorem 21.1]. Let ¥, C RN bea setand C : RN\ {0} — [1, 0] be
given by

X
)= Fet )

Assume that there is a homogenous polynomial of degree d containing X in its zero set.

(A) Let X € RN be a Gaussian random vector. Then for t > (2d + 1)(N — 1),

~ | = —~

P(C(X) > t) <11d(N —1)

and
E log C(X) < log(N —1) + log d + log(30).

S) Let x € SN, 6 € [0,1] and X5 € RN a random vector uniformly distributed in B(x, o).
Then for t > (2d + 1)(N - 1)o7},
1
P(C(Xs) > t) < 11d(N - 1)0‘1;

and
E log C(Xs) < log(N = 1) +log d +log o™ + log(30). O

In order to apply this theorem, we need to prove that X4[q] is contained in some hyper-
surface. This can be easily done, using techniques from algebraic geometry. However, we
omit the proof as these techniques go beyond the scope of this thesis.

Proposition 15215, [88; Proposition 4.20]. There is an integer polynomial of degree at most
n2"D" such that X4[q] is contained in its zero set.

Proof. The claimistrue for g < n-+1 by [88; Proposition 4.20]. To extend it further, recall that
forg > n+1, k(f, x) = ||f]|/||f (x)||. Therefore the linear projection Hy[q] — Ha[n + 1]
maps surjectively £4[q] onto £4[n+1] for g > n+1andtheclaimholdsalsoforg > n+1. O

Combining the above two results, we obtain the following probabilistic bound on «.

Proposition 15%16. (A) Let f € Halq] be a KSS random polynomial tuple. Then for t >
(n2"1D" + 1)(N = 1),

P (k() = £) < 11(n2"'D" 4 1)(N - 1)%

and
E log k(f) < log(N = 1) + n(log D + 3log 2) + log(30).
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(S) Let f € Hgylq], o € [0,1] and T» € Halq] a random polynomial tuple uniformly dis-
tributed in By (f, o). Then for t > (n2" D" 4+ 1)(N — 1)o7,
1
P (k(fo) = t) < 11(n2""'D" + 1)(N - 1)0‘1;
and
E log k(fs) < log(N = 1) + n(log D + 3log 2) + log 6™* + log(30). O

Remark 1523. The above results do not apply to the local condition number. The main rea-
son is that the above theorem, coming from [90] of Burgisser, Cucker and Lotz, only covers
the case in which X is contained in an algebraic hypersurface, but it does not take advantage
of the fact that X might have higher codimension. An extension of this form was obtained
by Lotz [281], but one should still work the details carefully as in the statement of Theo-
rem 15214,

Open problem B. Can the bound in Theorem 15214 be extended to the case in which ¥ is
a real algebraic variety of degree d and codimension c in such a way that the probability tail
bounds are of the form O(d(N — 1)t7°)?

Also, the following problem might be useful given the multihomogeneous structure of
Yalql.

Open problem c. Can the bound in Theorem 15214 be improved in the case in which
Y. is a real algebraic hypersurface in RZ7:1 Ni given by a multihomogeneous polynomial
h(Xq,...,Xq) of degree d; with respect to the block of N; variables X;? More concretely,

let %1, ..., xq be random vectors uniformly distributed in the unit balls. Is it true that
1
P(Cx =>t)<O \/Er_n[eo]((d,-(N,- - 1));
I€[q
as one obtains in the reducible case ¥ = Uj¢[q|%;? Vi

Remark 15%4. One should notice that N — 1 does not appear dividing in the above bounds
and successive bounds as it appears in the bounds given in [91, 92]. This is the case,
because there was a mistake in the citation of [87; Theorem 21.7] in [91]. However, this
mistake does not affect the order of the estimates. 19

Via geometric functional analysis The geometric functional analysis framework in
the probabilistic analysis of k is quite new. It was introduced by Ergur, Paouris and Ro-
jas [175, 176] for the zero dimensional case and it was applied by Cucker, Ergir and the
author [136] to the case of a single polynomial. The advantage of this method is that it can
be applied to distributions more general than the normal distribution. We will show this in
Chapter 5 in the special case of hypersurfaces. Here, we will provide a tail bound with a very
simple proof for the Gaussian case.

Theorem 15217. (A) Let | € Hy[q] be a KSS random polynomial tuple and x € S". Then

fort > 2,
7 (110N T (nd e\
Pk(f,x)>t) < = .
((f ) ) 2(n+1) ( t )
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(S) Let f € Hylq], o > 0, o := f + ol|f|lwg be a random polynomial tuple such that
g € Hqlq] is a KSS random polynomial tuple and x € S". Then for t > 2,

7 (119N (ln% t)"+1 1)+
P(k(fo, x) 2 t) < = ( ) (1 + —) .

2\n+1 t o

In the proof, we will use the following proposition. Recall that w,, := ﬂ%/l“ (% + 1) is
the volume of the unit Euclidean m-ball. We also recall Stirling’s estimation of Euler’'s Gamma
function:

Wl

(2e) e < 1 (2e)

x+1

VX TT(EH1) T Vax

+ | wIx

(1.21)

+

for x > 0.

Proposition 15218. (V) Let x € R9, ¢ > 0and x ~ N(x, o) be a random vector. Then
forall € > 0,

UJq e\9
mensas(mﬁ(;).

(M) Let g < n, Ae R7", 6 > 0and A ~ N(A, o) be a random matrix. Then for all € > 0,

q
Va2m)2 e \3 e\nt+l-q
Puog < o) < VIO (€)%, (S
a(0g(W) < &) < () wnsiq (=
Proof of Proposition 15218. (V) can be found at the end of [87; Proof of Proposition 4.21],
(1-\)n

and (M) in [87; Proof of Proposition 4.19] (page 90), where here the factor (ﬁ) 2 with
A= qT_l, is bounded by e?. o

Proof of Theorem 15217. (A) We do the proof for g < n + 1, for ¢ > n + 1 is analogous.®
By Proposition 15111, we can see that

2
P(lfllw = t) < e

fort > 2\/N. Now, note that forall t > 0 and v > 2\/N,

P(k(f, x))

— P (||f||vv/\/|| REDN2 + 04(Ry(F)) > t) (By Proposition 152 6)
<P (llfllw > uor \/|| REDI2 + 04(Ry(7))2 < u/t) (Implication bound)
<P(lfllw=zuw) +P (\/” RYDI? + 0g(Ry(1)? < u/t) (Union bound)
< P([Ifllw = u) + P(IRY(F)|| < u/t and o4(R, () < u/t) (Implication bound)
< P(|[fllw = u) + PUIRID < u/t)P(og(RL([) < u/t)  (RUF), RL(F) independent)
< el_% + - Wqg Wpi1-q (i)5 (%)nﬂ (Proposition 15218).

n+1
SAnd for ¢ > n + 1, one can get a tail bound of the order O(In2" t~9), but this bound will not be useful for
us.



46 Josué Tonelli-Cueto 152

We can apply Proposition 15218, because, by Proposition 15 6, ‘R?((f) and SR}((T) come from
taking independent orthogonal projections of f. This fact guarantees that R (f) and R (f)
are independent and Gaussian.

Here, we substitute v = 2V2NInz t > 2N for ¢ > 2, and we get for ¢ > 2,

1 n+1
In2 t)

P(k(f, x)) < (e+ gwq Wni1 g (i)a (SN)%) (

1 n+1
since t™N < ('”i L) . We substitute now the formula for w,, and we use the Stirling
estimation (1.21), to obtain the bound

ﬁw o (i)%< en e
2 T an) TN 2An—q+1) (n- g4 1) g

nlQ

emn e
S ? n—-q+1 g'
(n-qg+1)"2 g2
We put A = %5 € [0, 1] and observe that
ntl
n—-g+1 g 1A A n+1 n+1 n+1\ 2
(n—q+1)~ qu(u—)\)lz%) (n+1) ?2( ; )
This gives us
en e" (lipmny  1(26%\7 1 (119/8\F
n(1-%In 2L
e s =) < ()
(n—q+1) q (T)

[

n+

and so the desired bound follows using that e + /5, < 7/2 and that (%) >

(S) For the smoothed case, the proof is analogous to the one above. In this case, we
have

_(t-1)?

P(llfslw = ¢llifllw) < P(llglw = (t —1)/0) < e 5

for t > 1+20VN. We proceed as above, but we use the general version of Proposition 15218
and we substitute u = ||f||(2\/ﬂoln% t + 1). To obtain the same line or arguments as
above, one should only notice that u < ||f||2\/ﬁ|n% t(o+ 1) and so one obtains the same
as above, but with the extra factor (1 + é)"“. |

To pass from the local condition estimates to the global ones, we use a grid-based
method which is common in the probabilistic methods coming from geometric functional
analysis (see [399; §4.4]).

Theorem 15219. (A) Let f € Hy[q] be a KSS random polynomial tuple. Then for t > 4,

1984N\ 2 In"5 ¢
n z
P(k(f) > t) < 21( ) D" :

n—+1 t
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(S) Let f € Hqylq], o > 0, fc := f + o||f||g be a random polynomial tuple such that
g € Hqlq] is a KSS random polynomial tuple. Then for t > 4,

ntl ntl n+1
1984N\ 2 In"2" ¢t 1

n+1 t c

P(k(fs) 2 t) < 21( S

For proving the above theorem, we need the following lemma for “constructing” an
optimal grid that allows us to sample efficiently in the sphere and pass from the tail bound
estimates of the probability of the local condition number to the ones of the global condition
number.

Lemma 15220. [398; Lemma 5.2] (cf. [399; §4.2]). Let & € (0, 7/3). Then there is a finite
set Ns € S” such that forall y € S", dists(y, Ns) < & and such that

3 n

Proof of Theorem 15%19. (A)Fixt > 4.LetG C S"besuchthatforally € S”, dists(y, G) <

a- and define

kg(f) := max«(f, x).

XEG
By the 2nd Lipschitz property (Proposition 1527),
1 1 1 B 1
kg(f) k(i) ~ Dt t
and so 0 ,
K
> 7 —
Kdﬂ-1+ﬂﬂ-2

t
Hence k(f) > t implies kg(f) > t/2 and so, by the implication bound,

MqﬁznspmgnzUms#gm%Pm@mztm)
X€E
where the last inequality is the union bound. Without loss of generality, we can assume
#G < 3(3Dt)", by Lemma 15220 (taking & = 1/(Dt)). Finally, Theorem 15217 together
with some computations finishes the proof.

(S) Exactly like (A). O

Proof of Lemma 15220. Let Ns be a maximal set of S” such that for each distinct x, x €
Ns, dists(x, x) > 8. Such a set exists and its finite, since otherwise we can construct a
sequence {x} in S” such that for all distinct &,/ € N, dists(xk, x;) > & contradicting the
compactness of S”. This set satisfies the first property, since forall y € S”, dist(y, Ns) < 5,
otherwise Ns U { y } would contradict the maximality of Ns.

By construction, the family of sets {Bs(x, §/2) | x € Ns} is disjoint and so

# No voln(Bs (€0, 8/2)) = voln | J{Bs(x,8/2) | x € N} < vols(S") = (n+ 1)wps1.

Now, by [87; Lemma 2.31],

vol,(Bs(eg, 8/2)) = noo,,/5

2 o)
sin"!sds > w,,/ nsin" ' scossds = w,sin" 7
0 0



48 Josué Tonelli-Cueto 152

n
Note that sinx > 2% for x € (0,7/6), so sin" 2 > (%) . Finally, a simple maximization

shows that the bound provided is correct. |

Remark 1525. The geometric functional analysis’ approach definitely provides a more ele-
mentary proof than the integral geometric approach. This can be a good pedagogical tool
when one cannot go into the details of the integral geometric proof. However, the bounds
obtained are worse, both in the constants and asymptotically. The latter seems to be an
intrinsic characteristic of the method (since similar issues happen in [175, 176]), but it may
be because some of the traditionally used probabilistic bounds” are not the best bounds for
the job.

Open problem D. Can one obtain tail bounds of the form

P(k(f,x)=t) <0 (po|y(N)|ooly(n)tn_1+1) and P(k(f) > t) < O (poly(D,N)po'y(”)%)

using the methods of geometric functional analysis? For an approach looking to prove the
above estimate, the techniques from [141] might be useful.

Despite all the above said about the drawbacks of the methods from geometric func-
tional analysis, we have to point out that these methods have an advantage over the methods
from integral geometry: they are able to handle probability distributions that are not normal.
This was shown for the zero dimensional case in [175, 176] and for the case of a single
polynomial in [136], which we will cover in Chapter 5. 1

152-3 Alternative definitions of k

Now that we have gone through all the theory, one might wonder about alternative
definitions of k that might be better from one perspective or another. The following proposi-
tion however shows that all natural variations are equivalent up to a reasonable constant or
parameter.

Proposition 15221. Let f € Hy[q] and x € S". Then:

(0) For ko(f, x) == lIflw/ max {[If (x)ll, 54 (A5"Dxf)},

LKO(f,X) < k(f, x) < ko(f, x).

V2

(1) For ki(f, x) = |If w/y/IIf ()12 + 04(Dxf)?

ki(f, x) < k(f, x) < VDk4(f, x).

2) For ko(f, x) := ||f||\,\,/\/||f(x)||2 + cq(Aglﬁxf)z, where D f is the derivative of f as
amap on R+,

ko(f, x) < k(f, x) < V1 + Dko(f, x).

4Specially P(x/y > t) < P(x > wory < ut) < P(x > u) + P(y < ut).




183 Condition and Homology in Semialgebraic Geometry 49

8) For ks(F.x) = [F /[ IFCOI + 0g(Ag Def)? where £ 2= (£/I|filw)iciq)

1 f f
—ks(f, x) < 7 o k3(f, x) < k(F, x) < 7 o k3(F, x).

NG = Vg maxiciq) I fillw Vg miniejq) lIfillw

Proof. (0) follows from the inequality between the €., and €;-norms in R2, (1) from

1
—04(Dxf) < 04(Ag'Dxf) < 04(Dxf),

VD

(2) from

04(Ag'Dxf) < 04(A7'Dxf) = 0g(A7'Dxf (I — xx*) + Agf (x)x*)

< \Jog(A'Def )2 + DIIF ()12
and (3) from

Iflw  IIF Ol
maxieq) Ifillw [1f{lw

Iflw  IFCOl
min;efq) 1fillw I llw

< If(x)]l <

and

Ifllw  Oq(Ag'Dxf)

maxieiq Ifillw — Ilfllw

. f Og(A'DyF
minjeiq Ifillw — [IFllw

O

The above proposition only shows some of the variations, which can be themselves
combined. In the end, the reason to choose the definition that we have chosen is conceptual
and historical, since it is the one that allows us to develop the theory in its maximum aesthetic
appealing.

Remark 1526. Among the variants of k above, the only one that is not strongly equivalent
is k3. This is s0, because k3 is small whenever k is so, but the opposite impliciation is not
true. To see this, note that k3 is invariant under scalar multiplication of each component of
f, while this property is not true for k. By taking one component to zero, we can construct
a sequence {fx} such that {k3(fx)} is constant, but {k3(fx)} goes to infinity. q

Remark 15%7. One can observe that Proposition 15221(2) is just [142; Proposition 6.1].
However, the difference in the constants is due to an error in the proof in [142], in which
they used the identity fi(eg) = 9f /9Xy(ep) instead of the correct fi(eg) = d;0f /0Xy(ep),
due to Euler’s identity. q

153 k: a condition number for spherical semialgebraic sets

A spherical semialgebraic set is a semialgebraic subset of the sphere described by
homogeneous polynomial. Given f € Hgy[q] and ® a Boolean formula over f, the spherical
semialgebraic set described by (f, ®), S(f, ®), is given by

S(f,®) :=S"NW(f, D) (1.22)
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where W(p, ®) was defined in (0 . 2). Instead of defining a condition number for each descrip-
tion (f, ®), we will define a condition number associated only to f. This condition number
will be finite when for all ®, the descriptions (f, ®) is well-posed. The way to achieve this is
to focus on the possible boundary pieces. This motivates the following definition.

Definition 1531. Let f € Hy[g] and x € S". The local intersection condition number of f
at x, k(f, x), is the quantity in [1, oo] given by

K(f,x):= max «(f",x) (1.23)
Le[q]=+t

where [g]="! == {K C [q] | #K < n + 1} and f- = ();cL, and the global intersection
condition number of f, k(f), the quantity given by

K(F):= max k(f\) = max k(f, y). (1.24)
L<q] yes”
#L<n+1

The first thing we should notice is the following proposition, which explains the term
“intersection” in the name of the above condition number. Recall that an intersection (; ¢ N
of a family of smooth submanifolds {N;};¢ of a smooth manifold M is called transversal in
Mifforall x € N N,

Z codimy, pTxN; = codimr, ﬂ TN (1.25)

i€l i€l
Proposition 1531. Let f € Hy[q]. Then X(f) < oo iff the following conditions hold:
(1) Foralli € [q), Z°(f) := S(f, f = 0) is regular.
() Forall L C [q], the intersection (¢ Z°(f) is transversal in S”. O

Remark 1531. One should observe that in the definition of k, we limit to subsets L C [q] of
size at most n + 1. However, this is not the case in Proposition 1531. The reason for this is
that for #L > n + 1, ;. Z°5(F) is transversal in S” iff ;. Z°(f;) = @. Therefore when
#L>n+1, (e Z5(f)is transversal in S7 iff forall H C L with #H = n+ 1, ;e Z°(F)
is transversal in S”.

We have in this case a theorem even more general than Theorem 1522, which involves
not only algebraic sets, but all possible semialgebraic sets that can be constructed from f.
The proof will be done in the next chapter, together with the one of Theorem 1522,

Theorem 1532, [et f € Hy[q] be such that K(f) < oo. Then for all Boolean formula ®
over f and every g € Bw(f,X(f)~! min; || f|lw), we have He(S(f, ®)) = He(S(g, ®)).

As with Theorem 1522, we can interpret Theorem 1532 as saying that homology will not
change as long as we do not cross the set of ill-posed polynomial tuples. In this case, we
have that the set of ill-posed sets is given by

Salgh = | ) Talgl and Salgl = ) Talgl= [ Telgl:  @.26)

LE[q]S”‘H LE[qF”""l zeSn
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where

Salqly = {g € Halq] | g-(x) = 0, rank Dyg" < g} and T4q] := U Salqls. (1.27)

zeSn

Transferring the properties from k to k is straightforward, with the exception of the condi-
tion number theorem (Theorem 1529 and Corollary 15210) that can only be transferred in a
weaker sense.

Proposition 1533. Let f € Hylq] and x € S". Then:
* Regularity inequality: For all L € [q]=""1, either
- L
”fL(X)” > 1 or Gq(Adlef ) > 1 .
1w~ V2K(F, x) £l V2K(f, x)
In particular, for all L € [q] <™, if V2R(f, x) 1L
surjective and its pseudoinverse (D f“)T exists.

< 1, then D, f-: T,8" — Rt s

e 1st Lipschitz property: The maps

Halg] — [0, 00) and Halq] — [0, 0)
gl A llgllw
K(g, x) K(g)

are 1-Lipschitz with respect to the Weyl norm. In particular, X(f, x) > 1and k(f) > 1.
¢ 2nd Lipschitz property: The map

S" - [0,1]
1
K(f,y)

is D-Lipschitz with respect to the geodesic distance on S".

Yy =

e Weak condition number theorem:

f f
R(Fox) s — I g ey < 7w

" distw(f, Zalqlx) ~ distw(f, Zalq))

where distyy Is the distance induced by the Weyl norm.

Proof. They follow straightforwardly from the properties of k and the definition of k. Ex-
panding this out, the regularity inequality follows from Proposition 1523, the 1st Lipschitz
property from Proposition 1524 and Corollaries 1525 and 1526, the 2nd Lipschitz property
from Proposition 1527, and the weak condition number theorem from Theorem 1529 and
Corollary 15210. ]

Proposition 1534. Let f € Hy[q] be such that all its coefficients are integers of absolute
value at most H. Then either k(f) = oo or

)2(n+1)

¥(f) < V2DNH (22—%D”+2H«/N — O(DHN)O®

)2(n+1)(4D)2<"+1)
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IA

Proof. We take the maximum of all bounds given by Theorem 15213 noting dim Hg[q]"
N. m|

Proposition 1535,  (A) Let f € Hylq] be a KSS random polynomial tuple. Then for t >
(n%(2q)"'D" + 1)(N - 1),

P (k(f) > t) < 11(n*(29)""'D" + 1)(N — 1)%
and

E logk(f) < log(N—1) + n(logD + 6log 2) + (n + 1) log g + log(30).

(S) Let f € Hqylq], o € [0,1] and T» € Halq] a random polynomial tuple uniformly dis-
tributed in By (f, o). Then for t > (n*(2q)"™'D" + 1)(N — 1)o™},

P (k(fs) = t) < 11(n*(2q)" D" + 1)(N - 1)0‘1%
and
E log¥(fs) < log(N —1) + n(logD + 6log 2) + (n + 1) log g + log o~* + log(30).
Proof. We apply the union bound for a random variable that is the maximum of several

random variables together with Proposition 15216. We then observe that dim Hg[g]- < N
and

n+1
#[q]=" = Z (Z) < 2nq"".

Proposition 1536. (A) Let f € Hy[q] be a KSS random polynomial tuple and x € S”.
Thenfor t > 2,

1N\ (s e\
> [Inz ¢
P(k(f, x) > t) < 7ng"*! .
(k(f,x) = t) < 7nq (n+1) (t)

(S) Let f € Hylq], o > 0, fs := f + ol|f|lwg be a random polynomial tuple such that
g € Hqlq] is a KSS random polynomial tuple and x € S". Then for t > 2,

1N\ 5 (g e\ 1)1
P(E(fc,x)zt>s7nq"+l( ) ( ) (1+—) :

n—+1 t (o)

Proof. Analogous to the one of Proposition 1535, but applying Theorem 15217 thistime. O
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154 X.¢: a condition number for affine semialgebraic sets

The traditional way to pass from the affine to the homogenous world is homogeneization.
The homogeneization map

": Palq] — Halg]

d;
pp' = (PI(X/XO)XO ) :
i€lq]

(1.28)

takes each p; to its homogenization adding the variable Xy. This map allows us to transform
tuples of affine polynomials into tuples of homogeneous polynomials and so transfer the
theory developed for the spherical case to the affine case. In this way, the Weyl norm of
p € Palq] is defined by ||pllw := ||p"|lw and a KSS random polynomial tuple p € Pq[q] is
defined as a random polynomial tuple such that p" € Haqlq] is a KSS random polynomial
tuple.

Together with the above map, we consider the diffeomorphism

l0:R" = ST :={zeS" |z >0}

x = HO(x) := —1 (1), (1.29)

VI [lx]]* \X

which takes the affine space R" onto the upper half of S”, S . Note that the maximal circle
S§ = {z € S" | zy = 0} corresponds to the points at infinity of R" inside the com-
pactification S U S{, which differs from the usual compactification P”. The main reason to
compactify in the sphere is that one can still speak of signs of polynomials in S”, while this
is not possible, in general, in P,

Given a Boolean formula ® over p, we can naturally consider the Boolean formula ®"
over p" obtained by substituting the p; in ® by their corresponding homogeneization pl*.‘.
Now, we need to add to the polynomial tuple ph and the formula ®" a polynomial to encode
the sign of X,. To do this, we consider the polynomial tuple

H(p) == (IlpllwXo, p") (1.30)

and the Boolean formula
H(®) := " A (H(p)o > 0) (1.31)

over it. We can see then that
tO(W(p, @)) := S(H(p), H(®)).

The way we choose the scaling for X, in H(f) is such that that it has the same weight as p".
Following the transfer condition, we expect p € Pq4[q] to be well-conditioned if H(p) is
s0. This motivates the following definition.

Definition 151. Let p € Pq4[q]. The global affine intersection condition number of p,
Kaff(p), is the quantity in [1, co] given by

Kari(p) = K(H(p)). (1.32)
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We note that for this condition number, the following version of Theorem 1532 holds.
This again can be seen as the justification for calling the above quantity condition number.

Theorem 151. Let p € Pq4|q] be such that K.(p) < oo. Then for all Boolean formula ®
over f and every g € By/(p, Kage(p) ™" min; [|pillw), He(W(p, ®)) = He(W(g, @)).

Proof. Since min; |[H(p)illw = min; ||p;llw and distw(H(p), H(g)) < V2distw(p, g), it fol-

lows from Theorem 1532. O

Before continuing, let H{°[q] be the space of d-homogeneous polynomial g-tuples in
the variables Xy, . . ., X, and consider the orthogonal projection
: P, — Hy
h dalq] a 9] h (1.33)
p = pni=p(0,Xg,...,Xp)

that maps each p; to its d;-homogeneous part (p;)n, which is the polynomial obtained from
p; by eliminating all terms that are not of degree d;. The behaviour of p at the hyperplane
at infinity S§ is precisely captured by the behaviour of p, at S"~*. The following proposition
follows immediately from Proposition 1531

Proposition 15%2. Let p € Pq4[q]. Then K.e(p) < oo iff all the following hold:
(1) Foralli € [q), Z(p;) € R"and ZS((pj)n) C S"~" are regular.

2) For all L C [q], the intersection ;o Z(p;) is tranversal in R™ and ;e ZS((pi)n)
tranversal in S"1. |

Due to the above definition, we can see that the set of ill-posed polynomial tuples
—aff _ —_
Yq [q) = H(Za[q]) = {p € Palq] | Kutt(p) = oo} decomposes as

—aff —aff —aff
Sa ] =g lal+ U T [qlo (1.34)
with
=aff = —aff —o0
24 9]+ = {g € Palq] | g" € Talg]} and T4 '[qlo := {g € Palq] | &n € Tq [q]}
(1.35)
where 34 [q] := {g € HT[q] | K(q) = oo} Intuitively, fiﬁ[q]+ are those polynomial tuples
for which the ill-posedness comes from a non-transversal intersection and fiﬁ[q]o those for

which the ill-posedness arrives from a tangency to the hyperplane at infinity. We can get the
following more quantitative statement.

Theorem 1543, Let p € Py4|q]. Then

I plwk(p)
Lelg=+ || pElw

lpliw
\ —aff
distw(p, T [q])

Kar(p) < max {E(ph), (2 + 3D) } < (2+3D)

Lemma 15%4. Let g € Py[q], a > ||gllw and x € S". Then

ax(gnmen () 7
2+3D - if <5

K(((XXO,gh),X) < ( + ) llgn [lw ' |X0| ‘75 X
2 if |xol = =

In particular, k(aXo, g") < (2 + 3D) Ol(llz'(ﬁ\;)'
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Proof of Theorem 1543. We observe that, by the weak condition number theorem for k
(Proposition 1533),

||p||wf<p,%>}

max { K(p"), (2 + 3D)
{ Lelgl=t Ipyliw

llpliw lIpllw
< (2 + 3D) max {distw(ph, Sala)’ dstulom zg;’[q])}
= (2 + 3D) max { ”plv:ﬁ ’ ”pMﬁ }
distw(p, g4 [q]+) distw(p, g [qlo)

Pl
) —aff :
distw(p, =q [q])

Hence we only have to prove the first inequality. By the definition of k,¢, we have that

Rarlp) = max_ max{x ((p").x (llplhe, (69"}

Le[q]=r+t

= (2+3D)

Therefore it is enough to show that

lpllw —
K(Ph)-
lonlw

K (Ilpllvao, (pL)h) < 4D

Now, this is shown by Lemma 1544 by setting o = ||pllw > ||lpf|lw and g = p*, and so the
proof concludes. m|

Proof of Lemma 15%4. Let Hy(g) := (aXo, g"), so that [[Ha(g)llw = /o + ligll3,- Since
IHa(g)(X)l = a|xo|, we have

lglly, - ;
<(Ha(g), %) < \[1+ =3 Ixol ™ < V2lxo| ™

This shows the inequality for | xo| > 1/v2. We assume now | xo| < 1/2, sothat dists(x, S7) <
Z|xol. By the 2nd Lipschitz property (Proposition 1527),

K(Ha(g), X)
K(Ha(g), msn(x)) = 1+ EDk(Ha(g), X)|X0|

Now, since k(Hq(g), X)|Xo| < V2, this gives

K(Ho(£), X)
€(Ha(g). msg(x)) 2 ===
1+ T“D
To finish the proof it is enough to show that for y € S7,

o

Il ghlw

K(Ha(g), y) <2 k(& Y)-

Now, ||Ha(g)llw < V2a, so it is enough to show that

*
aeg

1
Ogi1| . _ > —o (A_lD &h)-
q (AdlDygh) \/5 q d Yy
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Let (t v*) with v € R9 and t2 + ||v||* = 1 be such that

5 ( ae;, ) (t v*) ( ae;, )
1 _ - _
a* A0|1Dygh AdlD}’gh

By an easy computation, we can see that if |¢| < 1/v/?2,

(e V*)( e )
A;,lDygh

1 _
—Gq(AdlDygh),

=%

and if || > 1/v/2,

(e V*)( oe; )
A;lDygh

> \/a2 (11 -VT=2) + (1 - 2)05(85'D,80)?

1
> —o0,(A7'Dygn),
N5 q(Ag Dygn)

where the inequality follows from direct minimization and the fact that o« > Gq(AalDygh),

which follows from a > ||g|lw and Corollary 157. |

Remark 1541. We observe that the last inequality in Theorem 153 is precisely [88; Propo-
sition 4.16] when D > 2. However, we note that our proof is different from the one given
in [88], which, in principle, could be extended to more general conic condition numbers. |

Motivated by Theorem 1543, let us define

Iplwk(py, x)

(1.36)
Lelgl="t*  [Ipyllw

Kate(P, X) 1=
for p € Palq] and x € S{, and K¢ (p) := Maxyesn Koe(p, y). With the above result, we can
perform the usual complexity analyses as shown above for k. We only sketch the proofs as
they are identical to the ones for k and k.

Corollary 15%5. Let p € Py[q] be such that all its coefficients are integers of absolute value
at most H. Then either Ku(p) = oo or

Kaff(p) < V2DNH (22—"3—1Dn+2H\/N

Sketch of proof. By Theorem 1543, we just need to bound for k(p") and K (p). For the first,
we apply Proposition 1534. For the latter, we proceed as in the proofs of Theorem 15213
and Proposition 1534, The bound obtained for Kyg(p) will be like the one above, but with
n—1inthe place of n. This makes that multiplying by (2+ 3D) does not affect the final bound
that we obtain. O

2(n+1)

2(n+1)(4D)2("+D)
) — O(DHN)9®

Corollary 1546. (A) Let p € Pqlq]| be a KSS random polynomial tuple. Then for t >
(n*(2(q +1))™D" + 1)(N - 1),
= 1
P (Kue(p) = t) < 55D(n*(2(q +1))"'D" + 1)(N - 1)?
and

E log Kaee(p) < log(N—1) + (n+ 1)(logD + 9log2) + (n + 1)log(g + 1) + log(30).
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(S) Let p € P4[q], o € [0,1] and vs € Palq] @ random polynomial tuple uniformly dis-
tributed in By (p, o). Then for t > (n*(2(q + 1))"D" + 1)(N - 1)o7,

P (Kar(Ps) = t) < 55D(n*(2(q 4+ 1))"7'D" 4+ 1)(N — 1)0‘1%

and
E log Kare(Po) < log(N=1) + (n+1)(log D +log(q + 1) +9log 2) +log 5" +log(30).

Sketch of proof. By Theorem 1543, we have to obtain tail bounds for k(p") and K3¢(p). For
the first, we apply Proposition 1535. For the latter, we proceed like in the proof of Proposi-
tion 1535 after noting that Koc(p) < |Ipllw/ distw(ff,ﬁ[q]o). We use a union bound to reduce
from the case of fzﬁ[q]o to the case of {p € Hy[q] | p- € E?’L[q]}. Then we use that
p — py is an orthogonal projection to apply the degree bound in Proposition 15215 to the
latter sets. Finally, we use Theorem 15%14. m|

The following probabilistic bound will be useful later.

Corollary 1547.  (A) Let p € Py[q] be a KSS random polynomial tuple and x € Sj. Then

fort > 2, .
n 1
. 119N\ 2 [Inz ¢
P(Kope(p, x) = t) < 7ng"* ( ) ( ) :

n t

(S) Let p € Pq4lq], © > 0, ps := p + ol||pllwa be a random polynomial tuple such that
g € Hqlq] is a KSS random polynomial tuple and x € S{. Then for t > 2,

n 1 n n
) 119N\ 2 [In2 ¢t 1
P(Kaff(pca X) 2> t) < 7nqn (T) (T) (1 + g) .

Sketch of proof. To handle

ol
JIPLOOI + 085" D)2

b

we separate numerator and numerator as in the proof of Theorem 15217. Then the rest is the
same, except that we have just n variables now, instead of n + 1. To handle the maximum,
we just apply the union bound as in the proof of Proposition 1536. m|

Further comments

Many of the results in this chapter can be found in [87] and [88, 91]. However, there are
some important additions: the gap theorem (Theorem 15213, Proposition 1534 and Corol-
lary 1545) for integer polynomial tuples, the tail bounds coming from geometric functional
analysis (Theorems 15217 and 15219, Proposition 1536 and Corollary 1547), and the in-
equality of Theorem 1543,

In addition to the new results, our presentation differs from those in [87] and [88, 91].
On the one hand, our definition of k is with the gth singular value, instead of the p-condition
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or the operator norm. This change leads to a clearer form of k which is easier to parse.
We introduce p afterwards, but only after familiarity with k has been attained. On the other
hand, our focus goes away from the condition number theorem, and more into the properties
and possibles bounds of k. Even though, this means that we acknowledge the beauty of
a condition number theorem and the geometric interpretation it gives k. We don’t view this
as the center of the theory, since from an algorithmic point of view the other properties are
more important than a ‘fancy’ geometric interpretation. This should be viewed as a break
with the philosophy of [87].

It remains an important exercise to develop the above theory in the multihomogeneous
setting, meaning that k(f, x) and k(f) should be invariant under the scaling of each poly-
nomial f; in f. This development would lead to a more robust k. The reason for this is that
semialgebraic sets are defined with atoms involving only one atom at a time.

We note that our approach to condition numbers follows the philosophy of the worst
variation. It would be interesting to study weak variations, where we consider the high-
probability-variation, following the notion of weak condition number introduced by Lotz and
Noferini [282].
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There are no dogmas to which we must conform. Our program is simple: to give numerical
meaning to as much as possible of classical abstract analysis.

Errett Bishop, Foundations of Constructive Analysis

Differential semialgebraic geometry
with condition-based inequalities

In semialgebraic geometry, it is usual to have results depending on “weak” inequalities.
These inequalities are of the form “for sufficiently small a” or “for x sufficiently smaller than
y”. Unfortunately, from an applied and computational viewpoint, these statements can be
useless, because they don’t give explicit bounds that can be used to obtain numbers sat-
isfying the desired statements. In the symbolic world, one can solve the issue by adding
infinitesimals; in the numerical world, we don’t have the luxury of using infinitesimals. Thus
we need to make the “weak” inequalities explicit and find explicit values for them.

In this chapter, we will substitute such weak inequalities by strong inequalities depending
on the condition number in the case of two theorems: Durfee’s theorem (Theorem 2532) and
Gabrielov-Vorobjov approximation theorem (Theorem 2542). Or, paraphrasing Bishop [Q4],
we will give “numerical meaning” to these inequalities in the well-posed case. The first result
will be fundamental for our constructions of simplicial complexes, and the second one for
passing from the arbitrary case to the closed case.

First, we recall Newton’s vector field and use a discontinuous version of it to prove a
converse of the Exclusion Lemma (Corollary 15*8); second, we present the Thom-Mather
theory that will play a fundamental role in this thesis; third, we introduce our main technical
tool, (f, A)-lartitions and (f, A)-partitions; and four and last, we prove, respectively, Durfee’s
and Gabrielov-Vorobjov approximation theorem.

251 A converse to the Exclusion Lemma

Given any smooth map f : S” — R9, we consider the open set Qf = {x €
S" | D4 f is surjective} and, on it, the Newton vector field of f as the vector field given by

Nf .= —D,fTf(x). (2.1)
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The main property of this vector field is that for any integral path ¢ — z;,
f(z:) = f(zp)e™". (2.2)

This property follows from the chain rule and the properties of the pseudoinverse.

Recall that Bs and §§ denote, respectively, the open and closed balls in S” with respect
the geodesic distance and that, for r > 0, the spherical r- neighborhood of X ¢ S” is the
set

Us(X,r):={peS"|ds(p,X) < r} = Uég(x, r). (2.3)

xeX

For f € Hgy|q], the algebraic neighborhood of Z°(f) with tolerance r is the set
ZP(F) = {x e S" [ IF (Il < rllf llw}- 2.49)

The following theorem is a two-way version of the Exclusion Lemma (Corollary 158) for
algebraic sets.

Proposition 25'1. Let f € Hy[q] and r > 0 be such that \2x(f)r < 1. Then
@ Z°(f) < ZP(f),
b) Us(ZS(F).r) € Z5,,,,(F), and

(©) ZS(F) € Us (zg(f>,«/§.<(f>r).

Proof. (a) is obvious and (b) is just a reformulation of the Exclusion Lemma (Corollary 158).
(c). Take x € Z,S(f) and consider the integral path t — x; of the Newton vector field
of f starting at x. Since \/§K(f)r < 1, we have that Z,S(f) C Qf, by Proposition 1523, and
so the Newton vector field is defined at every point of Z,S(f). By (2.2), t — x; does not
leave Z>(f) and so it can be extended indefinitely obtaining a global integral path [0, c0) >
t — X¢.
We have that

, - I lw  NIFCONl - -
1Xell < IDx FHIF (xo)ll = 11Dk FNIF (X)€" = e " < Vak(f)re”,
Ogq (Dxtf) ”f”W
where the first inequality follows from x; = —Djy, fo(xt), which follows from (2.1); the

first equality from (2.2), the second equality from the form of the singular values of the
pseudoinverse, and the second inequality from Proposition 1523. Therefore

/ |l %ell dt < Vok(F)r
0

and so x; converges absolutely and lim; . Xx; exists. By (2. 2), this limit belongs to Zg(f).
We have thus shown that starting from x we can reach a point of Z () following a path in S”
of length less than V2k(f)r. Hence dists(x, Z°(f)) < V2k(f)r and the claim follows. O

In the semialgebraic case, we can prove an analog of Proposition 2511 using a discon-
tinuous generalization of the Newton vector field.



25t Condition and Homology in Semialgebraic Geometry 61

25'~1 Boolean formulas over (f, t) and algebraic neighborhoods

We introduce several geometric notions that will be central later on. First, we extend our
universe of considered functions from homogeneous polynomials to homogeneous poly-
nomial with constants added. The reason for this is that these polynomials appear in the
Gabrielov-Vorobjov construction (see 254) and so the theory has to be extended to include
them.

Definition 251. Let f € Hy[q] and t € R®, a Boolean formula over (f, t) is a Boolean
formula ® supported on

{(f: = Ifillwt)), (F # |1 llwt)),
(f: > Ifillwt)), (F = [Ifillwt), (F < I6llwe)), (F < Ifillwe)) |7 € [q), j € [e]}

Given a Boolean formula ® over (f, t), the realization of (f, t, ®), S(f, t, ), is the semial-
gebraic set

S(f,t,3) = D (fi—l(tj), FUR\ ),

~

7 (4, 00), £ 8, 00), £ (—o0, 1), £ (-0, 1] i € [qhj € [e]) (2.5)
where f = (fi/llfillw)ie[q) @and the subscript in ®s» indicates that we evaluate subsets of
the sphere. In other words, S(f, t, @) is the spherical semialgebraic set obtained interpreting
(f, t, @) in the obvious way.

Remark 251. In the above definition, t € R€ gives us the constants that we can modify our
original polynomial tuple with. 19

Now, we introduce some notions for formulas and we define algebraic neighborhoods
for closed semialgebraic sets.

Definition 2512, Let f € Hy[g] and t € R®. Then:

(m) a monotone formula over (f, t) is a Boolean formula over (f, t) that contains no nega-
tions.

() a lax formula over (f,t) is a monotone formula over (f, t) whose atoms are of the
form (£ = [Ifillwt;), (£ 2 [Ifillwt;) and (f; < [[fillwt;).

(pc) a purely conjunctive formula over (f, t) is a monotone formula over (f, t) that does
not contain disjunctions, i.e., it is a formula of the form A;¢/(fs, o«; ||f3, |lwts;) where
aclql,belelandxe {=, %>, 2>, <,<}.

Definition 2523. Let f € Hy[q], t € R®, r > 0and ¢ be a lax formula over (f, t). The alge-
braic neighborhood of S(f, t, &) with tolerance r, S, (f, t, ), is the spherical semialgebraic
set given by

~ ~

S,(f,t, @) := Psn (fl,—l[tj —r,tj+rj, f;,—l[tj - r,oo)’f;._l(—oo, ti+rlli€lql,j€ [e]) )
(2.6)
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In other words, S, (f, t, ®) is the spherical semialgebraic set obtained by substituting in ® the
atoms (f; = ||fillwt;) by (f; < |Ifillw(tj+r)) A(fi = [Ifillw(tj—r)), the atoms (f; > [|fjllwt;)
by (f; > |Ifillw(t;—r)) and the atoms (; < ||fillwt;) by (i < ||fi|lw(t;+r)) and interpreting
the obtained formula in the obvious way.

To control the well-posedness of (f, t), we have to consider the separation, LLI(t), of
t € R® given by
LLi(t) = inf |t; — t;] 2.7)
1%

in addition to the condition number k. This parameter allows us to control that certain inter-
sections, suchas S(f, t, (f; > ||fi|lwt;) A(fi < ||fillwtk)), with ¢; > tx, remains empty when
passing to algebraic neighborhoods with sufficiently small tolerance. The following technical
proposition makes this clear.

Proposition 2512. Let f € Hy[q], t € R® and r > 0 be such such that LL|(t) > 2r. Then:

1. For every purely conjunctive lax formula ¢ over (f, t), there exist a purely conjunctive
lax formula NF (), called normal form of ¢, of the form

NF() =\ (B > tagllfall) A\ (B < tog I Fallw)

nen nev_

AN\ (B = sl Fallw) A (£ < tuso I Fallw)

nely
with . ,_, Wy C [q] pairwise disjoint, o : . UW_ — [e] and Ib,ub : Vi — [€]

such that for all n € Wy, tjpwm) < tubm), and such that

S(f,t,d) =S(f,t,NF(d)) and S, (f, t, d) = S,(f, t,NF(d)).

2. For every lax formula ® over (f, t), there exist a lax formula DNF(®), called disjunctive
normal form of ®, of the form

DNF(®) = \/ o
Ee=

with ¢ purely conjunctive and lax in normal form, and such that

S(f,t,®) = S(f, t, DNF(®)) and S,(f, t, ) = S,(, t, DNF(®)).

Proof. 1. Since A is commutative, in the sense that permuting atoms do not affect the real-
ization, we can just focus in the case

N\ i tageolfllw)

keK

with a : K — [e] and € {>, <, =}X, which is obtained when gathering all atoms in which
a particular f; appears. Further, by splitting atoms of the form (f; = t,|fi|lw) into (f; <

tagollfillw) A (fi = tallfillw), which again does not change the realization at all, we can
assume that oce {<, >},
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Now, we observe that substituting, respectively,

N\ (< taolifilw) by | fi < | min tage) |1Flhw

/(_EK g is <
g is <

and

N\ = taglIfill) by (2| max tae) [11filw
oc/,:iesKZ g IS >

does not change the realization. Hence we have substituted our initial factor by a factor of
the form (f; < ta@)|lfillw), (fi = taillfillw) or ((fi = o lIfillw) A (fi < tupiyll fillw))- In
the first two cases, there is nothing to prove. In the last case, if ¢/5() > tup(j), then both
S(f,t,®) and S,(f, t, ®) are empty, since LLi(t) > 2r, and we can just take NF(¢) to be
the empty formula. The claim is proven.

2. Using that A is distributive with respect Vv, in the sense that passing from ®gA (1 VPs)
to (Pog A @1) V (P A P2) does not affect the realization, we can transform @ into a formula

of the form
\/ 3

Ee=

with ¢ purely conjunctive and such that

S(F,t,@) =S| f,t,\/ de| and S (£, £,®) =S, £,1,\/ de |.

EeE Ee=

Applying (1) to each ¢ finishes the proof. |

Remark 2512, We observe that Proposition 2512 does not necessarily give efficient algo-
rithms. For example, DNF(®) can have size exponential in the size of ® as one can sees by
slightly modifying Example 053, q

251 -2 Discontinuous Newton vector field

We can now state and prove the semialgebraic version of Proposition 2511

Proposition 2513. Let f € Hy[q), t € (T, T)®and r > 0 be such that V2x(f)(r +T) < 1
and LLI(t) > 2r. Then, for every lax formula ® over (f, t),

@ S(f,t,®) CS,(f,t,®),
b) Us(S(f,t,®),r) C Spisz,(f,t, ®), and
©) S,(f,t,®) C Us(S(f,t, D), V2K(F)r).

We observe that (a) is trivial and that (b) follows immediately from the Exclusion Lemma
(Corollary 151 8). Therefore we will focus on (c). By Proposition 2512, we see that it is enough
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to prove the above proposition for a purely conjunctive lax formula ¢ in normal form, which
has the form

¢= /\ (B2 tallfalw) A /\ (s < taulIfullw)

neny neun_

A\ (2 trolfallw) A (B < tusgollfallw)

nely

with U4, VI_, Vg C [q] pairwise disjoint, o : N, UN_ — [e] and /b, ub : Wiy — [e] such that
foralln € Ny, tipum) < tubwm)- We know define the following set-valued maps

S$"3 x> Ly(x) = {me W | fu(x) < towllfullw}s

S"3 x> Lo(x) = {M eV | fi(x) = towllfallw},

S" 5 x b Lip(x) :={n €Wy | fu(x) < tipwllfallw}, and
S" 3 x > Lyp(x) := {n € Vo | fu(x) = tupullfallw}-

Foreach x € S”, L, (x), L-(x), Lys(x) and L,(x) are pairwise disjoint and each of these
sets encodes the clauses of ¢ that x does not satisfy or could stop satisfying after a small
perturbation.

Consider also the maps S” 3 x +— L(x) := L_(x) U Ly (x) U Lp(x) U Lyp(x) and
S" 5 x - T(x) € RYX) given by

tany Ifillw, i/ €Ly (x) UL-(x)
T/(x) = iy lfillw,  iF 1 € Lyp(x)
tu 1 fillw, ¥ 1 € Lup(x)

With the help of these maps, we define the discontinuous Newton vector field of (f, t, d)
T
NGO . (DXfL(X)) (FL0 (x) = T(x)) 2.8)

where Dy f-X) = (Dyf;)jeL(x) Selects the rows in D, =) indexed by L(x). In general, this
vector field is not continuous, but its solutions are well-behaved. With this vector field, we
can prove Proposition 251 3.

Lemma 25%4. () Given xq € S,(f, t, d), the integral path [0, T) > t > x; of the Newton
vector field of FLx0) —1(xy), NI =1(x0)), starting at x,, agrees locally with the integral
path of the discontinuous Newton vector field of (f, t, ), NFt.4 starting at xq.

(i) Let [0,T) > t — x; be an integral path of NF-t® and ¢t € [0,T). If t" > t, then
Li(xe) 2 Li(xe), Lo(xe) 2 L-(x¢), Lin(xe) 2 Lip(Xe) @and Lyp(Xe) 2 Lub(Xe).

(i) Given xo € S/(f, t, d), there is a forward-time integral path of the discontinuous Newton
vector field Nf-t:® of (f, t, d) starting at x, that extends indefinitely, i.e., for any time.

Remark 25 3. Although we could prove uniqueness of time-forward integral paths in Lemma
2514, we don’t provide such a proof. The main reason for this is that such a uniqueness result
is not needed. |
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Proof of Proposition 25*3(c). We restrict to the case of a formula ¢ as described above,
since it is enough to consider this case.

Let x € S,(f,t,d). By Lemma 254, we can consider the integral path of t +— x;
starting at this point that extends indefinitely. Further, for all t > 0, we have that

p {T/(Xo) + (fi(x0) = T1(x0))e™" if I € L(xo)
1(xt) =

(2.9)
T/(Xt) if € L(x¢) \ L(xo)

since, if I € L(xo), this follows from the formula for N9 and, if not, then when we add /,
this holds because f;(x;) = T/(x), and so no variation occurs. Because of (2. 9), the integral
path remains in S, (f, t, ). Arguing as in the proof of Proposition 2511, we can see that, by
the regularity inequality (Proposition 1533),

%]l < V2%(F)re.

Therefore

/m %]l dt < V2R(F)r

0
and so the limit lim;_, Xx; exists and belongs to S(f, ®), by (2. 9). Now, such a path lies on

S" and has length at most V2 &(f)r. Hence the claim follows. O

Proof of Lemma 25 4. (). For the considered integral path, we can check that for ¢ suffi-
ciently small, L(x;) = L(xo). Indeed, for / € L(xp),

fi(xe) = Ti(x0) + (fi(x0) = T/(xo))e™*

and so [ € L(x;) for t > 0, since the inequalities defining L(xp) will still hold. And for
I € [q] \ L(xg), we have strict inequalities, and so, by continuity, / € [q] \ L(x;) for t
sufficiently small. Hence, along the integral path t — x;, N,’:’tt’d’ = NQ<X0)_T<X°) for sufficiently
small t. Thus the claim follows.

(i). We prove the claim only for L., since for the rest the proof is analogous. By (i) and
the formula for £(x;) above, we can see that fj(xs) — T/(xs) = (fi(xs) — T/(xs))e* ~ for

any s, s’ € [t, t") with s’ > s sufficiently near to s and / € L(xs). This means that
{s et,t']|foralls’" €0,s], Ly(xs) 2 Ly(x¢)}

is open. Since the defining conditions of L (x) are closed, it is also closed. Thus it agrees
with [t, t’] and the claim follows for L, .

(iii). By the regularity inequality (Proposition 1533) and (i), we can guarantee that a local
time-forward integral path starting at xq exists and that it does not leave S, (f, t, d). By {ii),
we only have to paste finitely many integral paths of the Newton vector field of £-Xt) —1(x,, ).
Hence we can extend the integral path indefinitely, as desired. m|

One may think that the proof above can be adapted to obtain a continuous retraction
of S, (f, t,d) onto S(f, t, ) when ¢ is a purely conjunctive lax formula, so that one proves
Durfee’s theorem (Theorem 2532). However, as shown in Example 251 below, the flow
of the discontinuous Newton vector field is not continuous in general. This phenomenon
motivates the introduction of Mather-Thom theory to be able to work with vector fields better
suited for the semialgebraic setting.
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Example 25*1. We consider a pointed cone C (for simplicity, in R?) givenas €, > 0A €y > 0
where €1, €5 are linear functions. In this case, the Newton vector field (over either ¢; = 0,
¢y =0, 0r €, = €5 = 0) is just the orthogonal projection and the discontinuous Newton field
is the orthogonal projection onto the correspondent pieces of the boundary. Figure 251
shows two such situations for cones with different openings. For S c {1, 2} the region Rg
in the figure is the set {x | L(x) = S}.

Figure 2511 Discontinuous Newton vector field for a convex cone

We observe that in the left-hand drawing the flow of the discontinuous Newton vector
field is continuous, while in the right-hand drawing it is not (as illustrated by the integral paths
Y1 and ys whose end points are far away even though their initial points are near). We also
observe that this difference is not caused by conditioning as k(¢1, €3) is the same for both
situations (each pair of lines being obtained from the other by a rotation). A

252 Mather-Thom theory and some Whitney stratifications

Let us start with a motivation. Gradient retractions are central in Morse theory, where
they are used to establish homotopy equivalences between fibers of Morse functions at pairs
of regular values without critical values in between.

More precisely, it is known that for a submersion a : M — | from a compact manifold
M toaninterval | C R, the gradient of a induces a homotopy equivalence a™(t) € a™(J)
for any subinterval J C land any ¢ € J. In more general terms, but also using the gradient of
o to prove it, this translates into the following statement (a particular case of Ehresmann’s
Lemma): for a submersion a : M — | from a compact manifold M to an interval | C R,
the map a : M — lis a trivial fiber bundle. Recall that a trivial fiber bundle a : E — Bis a
continuous map of topological spaces for which there is a subspace F of E (the fiber) and a
homeomorphism h : E — F X B such that the diagram

E—)FXB

N

commutes. That is, a is a projection in disguise.
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The extension of these results to a more general class of maps is part of the so-called
Mather-Thom theory [190, 285, 388]", which allows one to generalize the results above
from smooth to semialgebraic, not necessarily smooth, maps. Below, we outline the main
notions of this theory, stating a version of the so-called Thom’s first isotopy lemma; show
the theory in action by proving Theorems 1522 and 1532, as promised in the last chapter;
and introduce the main technical construction of this chapter.

2521 Whitney stratifications and Thom'’s first isotopy lemma

The following definition generalizes the notion of a triangulation of M, by allowing to
decompose M into more general pieces.

Definition 2521. [190; Ch. I, §71] A Whitney stratification of a subset  of a smooth manifold
M of dimension m is a partition ‘W of Q into locally closed smooth submanifolds of M,
called strata, such that:

F (Locally finite) Every x € Q has a neighborhood intersecting finitely many strata only.

W (Whitney’s condition b) For every strata g, o € W, every point x € ¢N G, every sequence
of points {x¢}¢en in g converging to x, and every sequence of points {ye}teen in ©
converging to x, we have that, in all local charts of M around x,

lim x¢, ye € lim Ty,0,
£—00 £—00

provided both limits exist. The inclusion should be interpreted in the local coordinates
of the chart: x¢, y, denotes the straight line joining x¢ and ye, T,,c denotes the affine
plane tangent to o at y,, and the limits are to be interpreted in the corresponding
Grassmannians of R,

A Whitney stratified set (2, W) of M is subset Q of M together with a Whitney stratifica-
tion W.

Remark 2521. In many references, e.g., [285; §5], it is usual for the definition of Whitney
stratification to include the so-called boundary condition which states that for every pair of
strata ¢, 0 € W, ¢N o # @ implies ¢ C 6. We omit it from the given definition, because this
condition is not needed and “is something of an embarrassment, since it is not preserved
under natural operations on stratifications” [190; pp. 716-17]. 1

Remark 2522. We note that Whitney’s condition b has not to be checked for every local
chart of M, since it holds for all local charts if it holds for just one local chart of M [285;
Lemma 2.2]. Further, one can check it in the local chart of an ambient manifold containing

M.

"The core of the theory was introduced by Thom in 1969 [388]. However, the original paper was hard to
read. In the Spring of 1970, Mather gave a course at Harvard. The lecture notes of this course became the
unofficial reference to the theory, since they explained and expanded in great detail the original ideas of Thom.
In 2012, these references were printed officially [285]. Although we used the more accessible book [190], we
call the theory ‘Mather-Thom theory’ to acknowledge the two creators of the theory. However, in some other
references like the original reference by Mather [285], this theory is called Thom-Whitney theory.
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We also note that Whitney’s condition b implies the weaker Whiney’s condition a [285;
Definition 1.1] which states that for every ¢,oc € W, x € ¢ N G and sequence {y,} in
o converging to x, we have Txg C limy— Ty,0 Whenever the limit exists [285; Proposi-
tion 2.4]. 1

We go through some examples and non-examples to get familiar with the introduced
concepts.

Example 2521. For every smooth manifold M, (M, {M}), is a Whitney stratified set of M.
We will refer to this as the trivial stratified set of M. A

Example 2522, The sign map sgn : R™ — {-1, 0, +1}™ which maps each x € R™ to the
vector of its signs induces a Whitney stratification on R™, which it's called the sign partition.
We note that the Whitney partitions that we will be working with look locally like the sign
partition. A

Example 25?3 (Spiral). Consider the stratification of R? consisting of the point {0}, the
smooth one-dimensional submanifold C := {(e’ cos(t), e’ sin(t))|t € R}, and the open
subset o := R?\ ({0} U C). This stratification does not satisfy Whitney’s condition b.

Note that C is a logarithmic spiral and that the angle between 0, x and T,C is wt/4 for
all x € C. This implies that limg—e 0, ye & lime—eo T,,C for all sequences {ye} of points
in C, whenever the two limits of lines exist. Therefore Whitney’s condition b cannot hold at
0e{0}nC.

The intuitive reason for this violation of Whitney’s condition b is that the spiral C oscillates
too much around 0. This means that we should see Whitney’s condition b as a “smoothness
condition” for stratifications, which guarantees that the different strata “paste” nicely to each
other. A

Example 2524 (Whitney’s umbrella). [190; Ch. /, §7]. Consider the algebraic set Q :=
{(x,y,z) € R®| x? — zy? = 0}, which is known as Whitney’s umbrella. An initial stratifi-
cation of 2 can be obtained separating the line L = {(x, y,z) € R® | x = y = 0} from
the surface S := Q \ L. However, one can check that the stratification {L, S} of Q does not
satisfy Whitney’s condition b at the origin.

Intuitively, the reason for this is different from that for the spiral. The Whitney umbrella
does not have wild variations at the origin. However, one can check that €2 looks different
locally around (0,0, t) € L depending on whether t < 0, ¢t = 0andt > 0.1ft < 0, Q
looks locally like a line; if t > 0, like two planes intersecting transversely; and if t = 0, like an
umbrella broken by the wind. This allows to see the failure of Whitney’s condition b as the
existence of a radical change in the local topology of €2 as we move along L, which again
can be seen as a lack of “smoothness” of the stratification {L, S}.

However, the stratification {L, S} can be turned into a Whitney stratification by dividing
the line L into O = {(0,0,0)}, LT := {(0,0,z) e L | z > 0} and L™ := {(0,0,2z) € L |
z < 0}. Indeed, {O,L*, L™, S} is a Whitney stratification of £ and the phenomenon above
does not happen. This procedure can be done in general for semialgebraic sets and one
can show that every semialgebraic set admits a Whitney stratification [190; Ch. /, 2.7)]. A

The following proposition shows that Whitney stratified sets (and Whitney stratifications)
are closed under many of the usual operations.
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Proposition 2521. [190; Ch. |, (1.2), (1.3) and (1.4)]. Let | be a finite set.

(R) Let (Q2,“W) be a locally closed Whitney stratified set of a smooth manifold M. If U is
an open subset of M, then (2 NU, W)y), where Wiy :={cnU|onNU# @} isa
Whitney stratified set of M.

(P) For each i € |, let (Q;,"W;) be a locally closed Whitney stratified set of a smooth
manifold M;. Then (I1;¢ i, [1;eg Wi) where [1;q Wi = {Il,q0i | ci€ Wi}tisa
Whitney stratified set of [ ;¢ M.

() Let M be a smooth manifold and, foreach i € |, let (Q;, 'W;) be a locally closed Whit-
ney stratified set of M. If W, ..., W, are transversal, i.e., foreveryc, € Wy, ...,0, €
W,, NI_,oj is a transversal intersection, then (N;e$2, AjeW;) where

/\(W/ = {Nje0; | o; € W;}

i€l
is a Whitney stratified set M. |

Recall that a map is proper when its inverse image of any compact subset is compact.
Let A be a partition of A and B one of B, by a stratified homeomorphism f : (A, A) —
(B, B), we mean a homeomorphism f : A — B that induces a bijection between A and
B, ie, foraloc e A, f(o) € B. The reason we have introduced Whitney stratifications and
Whitney stratified sets is the following result, a version of the so-called Thom’s first isotopy
lemma, which generalizes Ehresmann’s Lemma to more general maps.

Theorem 2522 (Thom’s first isotopy lemma). [190; Ch. I, (5.1.) and (5.2)]. Let M be a
smooth manifold and (92, ‘W) a locally closed Whitney stratified set of M and let &« : M —
RX be a smooth map such that

() a:Q — RXjs proper,
(i) g :0 — RX is surjective, for each stratum o € ‘W; and
(i) ojg: 0 — R* is a submersion, for each stratum o € ‘W.

Then a : Q — R js a stratified trivial fiber bundle. That is, there exist a Whitney stratified
set (F, F) and a stratified homeomorphism h = (hg«, he) : (2, M) — (R¥ xF, {R¥} x F)
such that & = hp«. O

Remark 2523. Note that every submersion is an open map and that R¥ is connected. There-
fore to check that a5 : 0 — R is surjective is enough to check that a(o) is closed. Then,
by connectedness, a(c) = R¥, since a(o) is both open and closed. q

Remark 2524. As the codomain of a is RX, it follows from the proof of [190; Ch. Il, (5.2)]
that we have a trivial fiber bundle and not just a locally trivial fiber bundle. The last sentence
follows from noting that the trivial fibration in the statement of [190; Ch. /I, (5.2)] is stratified,
see [190; Ch. /I, (5.7)]. q

Remark 2525, We observe that, since h is a stratified homeomorphism, it follows that for all
X,y € Q, he(x) = he(y) implies that x and y lie in the same stratum of W. )|
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Remark 25%6. We note that for each x € R¥, we have that a~!(x) = F. Further, consider
the stratification

Wia1(x) == {oN al(x)|oceW,onal(x) 2}

Then one can see that ‘Wig-1(4 is @ Whitney stratification of a~(x) and that Ar gives a
stratified homeomorphism between (a1 (x), Wo-1(x)) and (F, F). Because of this, we can
take as (F, ) any of the fibers of a. 1

252-2 Mather-Thom theory in action: Theorems 1522 and 1532

We are now in a position to prove Theorems 1522 and 1532 using Thoms’s first isotopy
lemma, although the former can be proven just with Ehresmann’s lemma. We first prove the
simpler Theorem 1522 and then the harder Theorem 1532,

Proof of Theorem 1522, Consider the set
Q:={(g,x) eBxS"|f(x)=0}

where B := By(f, || fllwk(f)™1). If Q is empty, we are done; so we can assume that € is
not empty, and we consider the projection

a: 02— B
(8. x)— 8.

For any compact set K € Hy[q]\ Zq[q], we have that o~} (K) is a closed subset of KxS" and
so compact. Thus a is proper. Further, we can easily see that for g € B, a™!(g) = Z5(g).
Hence, if we show that a is a trivial fibration, we are done, since all fibers would be homotopy
equivalent and thus all of them would have the same homotopy.

To show that « is a trivial fibration, we will apply Thom'’s first isotopy lemma (Theo-
rem 2522). Let A: BXx S” — RY be given by A(f, x) := f(x). For every (g, x) € Bx S”,

D(g,x)A = (ERE)( ng) : ﬂd[q] X TXSH — RY

where RY is the evaluation map, defined in Proposition 15*6. For (g, x) € Q, we have
that Dz x)A is surjective, because Dyg is so. To see this, note that x € Z°(g) and that
g & Yalq], by the Condition Number Theorem (Corollary 15210). Hence € is a smooth
manifold. On this manifold, a is smooth and we consider the trivial Whitney stratification
{Q}. The last step for applying Thom'’s first isotopy lemma (Theorem 2522) is to show 1) that
a is a submersion and 2) that its image is closed in B, by Remark 2523,

1) D(g.x)a is the restriction of the projection Hg[q] X TxS" — Hy[q] to

Tigx)Q = {(h,v) € Halq] X T,S" | h(x) + Dxg v = 0},

and so it is surjective whenever Dy g is so. The latter was shown in the above paragraph for
(g, x) € Q. Thus a is a submersion.

2) Let {g« } be a sequence in a(£2) converging to some g € B. Now, due to the axiom
of choice, there is a sequence {xx} in S” such that {(g«, x¢)} is a sequence in Q. Since
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S” is compact, we can assume without loss of generality that {x,} is converging to some
x € S", after passing to a subsequence if necessary. Hence g = a(g, x) € a(Q2) and we
are done. Therefore a(f2) is closed in B.

Since the above holds, we can apply Thom’s first isotopy lemma (Theorem 2522) to the
trivial stratification and the proof concludes. m|

The above proof didn’t use stratifications. In the next one, we need to be more careful
and so we will need to introduce a new notion of formula.

Definition 25%2. Let f € Hy|q]. A strict formula over f is a monotone formula over f that
contains only atoms of the form (f; = 0), (f; > 0) and (f; < 0), and a saturated formula over
f is a purely conjunctive strict formula ¢ of the form

q
¢ = \(fixi0)

=1
where oc;e {>, <, =1}9.
The term “strict” alludes to the fact that no lax inequalities are allowed and the term

“saturated” to the fact that one cannot add more strict atoms to the formula. Saturated
formulas can be encoded by a sign vector, which will be very useful for proofs.

Definition 2523, Let f € Hy[q] and ¢ a saturated formula over ¢. The sign vector, sgn(é),
is the vector sgn(¢) € {—1,0,+1}9 given by

+1, if o«cf is >
sgny(P) := -1, if oc; is <
0, if o/ is =.
The boundary order on {—1,0, +1}9, <, is the partial order defined, for o, ¢’ € {-1,0, +1}9,

by
o<o o forallie[qg],ci =00ro; =0, (2.10)

Note that for all x € S(f, ), where ¢ is a saturated formula over f € Hy[q], we have
that sgn(f(x)) = sgn(¢), where sgn(f(x)) is just the vector of signs of f (x). In other words,

x € S(f, ) iff sgn(f(x)) = sgn(d).
The following lemmas are instrumental in the proof of Theorem 1532,

Lemma 2523, Let f € Hy[q]. For every Boolean formula ® over f, there is a unique strict
formula sDNF(®), called strict disjunctive normal form, of the form

sDNF(®) = \/ b

Ec=

where | is finite and the ¢ are distinct saturated formulas over f such that for all m > 0 and
polynomial tuples g € R[Xp, . .., Xn]9,

W(g, ®) = W(g, sDNF(®)).

In particular, S(f, ®) = S(f, sDNF(®)).
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Lemma 25%4. Let f € Hy[q] and ¢ and y be saturated formulas over f.

@) IfS(f,d) NS(f,y) # @, then sgn(¢d) < sgn(y).

(b) Ifx(f) < coand S(f, ) # @, then the following are equivalent:

* S(f,$) CS(f,y).

* S(f,d)NS(f,y) # 2.
* sgn(¢) < sgn(y).
In particular, when k(f) < oo and sgn(é) < sgn(y), S(f, ) # @ implies S(f, y) # @.

(c) If k(f) < o0 and S(f, d) # @, then

S(7,8) =5 (£.8) = [_{(S(F.w) I san(w) < san(w))

where @ is the purely conjunctive lax formula obtained substituting (f; > 0) by (f; > 0)
and (f; < 0) by (f; <0).

Proof of Theorem 1532, Let B := By/(f, min; || f;|lwk(f)~!) and consider the proper projec-
tion

a:BxS" —>B
(& x)— &.
For each saturated formula ¢ over f, consider the semialgebraic set

Q(¢) := {(g. x) e BXHylq] | x € S(g. dg)}-

We can see that
S :={Q(d) | ¢ is a saturated formula over f, Q(d) # @}

is a locally finite partition of B X Hgy[q].
Arguing as in the proof of Theorem 1522, we can show that the zero set of

Ap :BxS" — RH®
(8. %) = g"P(x)

where L(¢) := {/ € [q] | sgn;(d) = 0} is a locally closed submanifold and that the
restriction x|zt (0) is a submersion. Now, since Q(¢) = Ad‘)l(o) N U(¢p) where

U(d) := {(g,x) e BxS" | for I € [q], fi(x) > 0if sgn;(d) = +1
and fi(x) < 0if sgn,(¢p) = -1},

the same applies to (), i.e., Q2(P) is a locally closed submanifold such that a|q(q) is
a submersion.
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To apply Thom’s first isotopy lemma (Theorem 2522), we need to do two things: 1) show
that S satisfies Whitney’s condition b and therefore is a Whitney stratification, and 2) show
that for each Q(¢), a(Q(d)) is closed in B, by Remark 2523,

1) By Lemma 2524, we can see that for Q(¢) € S,

09) = {(8:x) €BxS" | x €5 (£, )} = (_J{2w) € S| sn(w) < san(e)}.

This means that we only have to check Whitney’s condition b for (g, x) € Q(y) N Q(P) with
sgn(y) < sgn(¢). Let us choose some local chart (U, u) around (g, x), in which (g, x) is
written as u. We will work in the coordinates of this chart to avoid tedious notation, so that
we write u, v, . . . instead of (g, x), (h, y), . . .. Let {u¢} be the sequence in Q(y) converging
to u and {v,} the sequence in Q(¢) converging to u.

On the one hand, we can see that
im Ty, () = Jim (ve + kerDy,Ag) = u + ker DyAg.

£—o00

On the other hand, since ug, vy converges to some line, we can assume without loss of
generality that ||5§i5§ 0 is convergent, after passing to a subsequence if necessary. We can
see that its limit is the direction vector of the limiting line lims— e Ue, ve. Therefore we only

need to show that
. Ueg — Ve
lim D Ag (—) =0
£—o0 llug — vell

By continuity, this is the same as

im Dy A ( te = Ve )0
tmoo P\ Nug=vell)

Now, since Ag(ve) = 0, by hypothesis, and Ag(ug) = 0, since Ay(ug) = 0 by hypothesis,
we have that

Up—vVv 1 upg—v,
Dy A (—) <L e oz (—_)
lue — vell 2 welug.ve] llue — vell
1
<= max |[[D?Asllllus = vell,
2We[ww]” 2 Ao llue = vell

by Taylor’s theorem. Hence, the desired limit is zero and Whitney’s condition b holds.

2) Take Q(¢d) € S. Let g € B be a limit point of a(2(¢)), we only have to show that
S(g.$g) # @ in order to show that g € a(Q(d)). Take any sequence {gi} in a(2(d))
that converges to g. By the axiom of choice, we have that there is a sequence {xx} in S”
such that {(gg, x«)} lies in Q(¢d). By compactness of S”, we can assume, after taking a
subsequence if necessary, that {x,} converges to some x € S”. Now, by the form of the
closure of Q(¢), we have that x € S(g, ¢,) and so, by Lemma 2524, x € S(g, y,) for some
saturated formula y with sgn(y) < sgn(¢). But then S(g, y,) # @ and so, by Lemma 2524
again, S(g, ¢g) # @. Thus g € a(2(¢)). Since g was arbitrary, this shows that a(Q2(¢)) is
closed in B.

At this moment, we can apply Thom’s first isotopy lemma (Theorem 2522) and deduce
that a : B X S” — B is a stratified trivial fioer bundle. Note that o was already a trivial
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fiber bundle, we need Thom'’s first isotopy lemma to guaranteed that it is a stratified trivial
fiboer bundle. Following Remark 2526 above, we note that the induced stratification on S” =
o~ (f) is given by

Wr .= {S(f, d) | ¢ is a saturated formula over f, S(f, d) # @}

and so Thom’s first isotopy lemma (Theorem 2522) tells us that there is a continuous map
h:BxS" — S" such that

(o, h): (BxS",S) » (BxS",{B} x {Wr})

is a stratified homeomorphism.

We manipulate this homeomorphism to prove the desired result. Let ® be an arbitrary
formula over £. By Lemma 2523, we can assume without loss of generality that @ is in the
saturated disjunctive normal form \/ tez . Consider the set

= 2@y

whose image under (a, h) is B x S(f, ®). Since (a, h) is a homeomorphism, it restricts to a
homeomorphism
(o, 1) : Q(®) —> BXS(F, ®)

which induces a homeomorphism between each fiber of a’, S(g, ®,) = (a’)~*(g), and
S(f, ®). Hence they have the same homology and we are done. O

Proof of Lemma 2523. We apply Morgan’s laws to move negations inwards until they apply
to atoms. Then we just substitute =(f; = 0) by (f; # 0), =(f; # 0) by (f; = 0), =(f; > 0) by
(fi £0),=(fi 20) by (fi <0), =(fi <0) by (fi =0),and =(f; < 0) by (f; < 0). After this,
we substitute (f; # 0) by (f; > 0) vV (f; < 0), (i > 0) by (f; > 0) vV (f; = 0), and (f; < 0) by
(f: < 0)V (f; =0).

Here, we apply the distributive law to take the disjunctions out, until we arrive to a

formula of the form
\/ /\ (Fog(k) ik 0)
J€J keK;

where J is a finite set, {K;};e a family of finite sets, {a; : K; — [q]};ey a family of maps
and «e {=, >, <},

If for some j € J, a; is not injective, then either some factor is repeated inside
A keK; (f; (k) ).k 0) or there are two factors that cancel each other and so, we can elimi-
nate it. Therefore, without loss of generality, we can assume that K; C [g] and that a; is the
inclusion map.

If for some j € J, K; # [q], then substitute /\keKj(fk o x 0) by

\/ NSO ARG EAD)

e <)V \KeK; kelg)\K;
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where all the summands are saturated. So without loss of generality, K; = [q], and so each
Nkeq)(fc < 0) is a saturated formula.

In the last step, we eliminate the repeated summands to arrive to a formula of the desired
form. None of the transformations we have done affects the realization, independently of
which polynomials we substitute in the place of the f;, so it satisfies the desired property.
Further, by substituting f; by X;, we can see that such formula is unique, since

W((Xl’ oo ,Xq), SDNF(@)(Xl,...,Xq)) N {_15 0, +1}q = {Sgn(djﬁ) | g € E}
which determines uniquely sDNF(®). O

Proof of Lemma 2524. (a). When we take a limit point of S(f, y), the equalities of the form
fi(x) = 0 are preserved and the inequalities f;(x) > 0 (resp. f;(x) < 0) are either preserved
or they tumn into equalities of the form f;(x) = 0. This proves the claim.

(b). The first sequence of implications from the first to the third point follows from (a).
For the implication from the third point to the first point, let x € S(f,¢) and L := {/ €
[q] | sgn;($) = 0}. Without loss of generality, assume that L = [k]. Then by the regularity
inequality (Proposition 1833), D, f" is surjective and so, by the implicit function theorem,
there is an open neighborhood U of x in S” and v : U +— B(0,1) € R” a diffeomorphism,
such thatforalli € [k]and y € U, uj(y) = fi(y). By making U smaller if necessary, we can
assume that for all / € [g] and y € U, we have that f;(y) > 0if sgn;($) = sgn;(y) = +1,
and f;(y) < 0if sgn;(p) = sgn;(y) = —1. Taking the point,

- €
xe=u fu(x) + 5 ;sgn/w)e/
we can seethatfort € (0,1), x¢; € S(f, y), since sgn(f(x)) = sgn(y); and that lim;—,o x; =
x. Thus x € S(f, y) and the implication holds.
(c). This follows easily from (b), since the sets S(f, ¢), with ¢ a saturated formula over
f, cover S”. O

25%-3 (f, \)-lartitions and (£, A )-partitions

A polynomial tuple f € Hy[q] can partition the sphere S” in many ways, according to
the values it takes. This motivates the introduction of (f, A)-lartitions and (f, A)-partitions.
The former divide S” according to the values that f takes with respect to some finite grid. The
latter consider also the signs that f takes. Depending on the context, one or the other is more
useful: (£, A)-lartitions will appear in the proof of Durfee’ theorem (Theorem 2532) and (£, A)-
partitions in the proof of the Gabrielov-Vorobjov approximation theorem (Theorem 2542).

Definition 2524. Let f € Hy[g] and A € RI*™ be a matrix whose entries satisfy A;; <
-+ < \j.m, foreach i € [q]. To each point x € S” we associate the following sets:

(Je) Forall k € [m], Jex(x):={i €[q] | i(x)/Ifillw = Nik}.
J00) Jyo(x) == {i € [q] | fi(x)/Ilfillw < Aix}.
(J01) Forallk € [m —1], Jyx(x) := {i € [q] | Nik < Fi(x)/|Ifillw < Niky1}-
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(02) Jy.m(x) :={i € [q] | Aiim < Fi(x)/Iillw}-

This defines the ordered partition of [g] (in which we allow empty sets):

J(x) := (Jpo(x), Jo1(x),Jg1(X), ..., Jom—1(X), Jg.m-1(X), Jo.m(X), Jg.m(X)).

It is clear that the fibers of x — J(x) induce an equivalence relation on S”. We define the
(f, N)-lartition T ) as the set of equivalence classes of this relation.
An ordered partition J := (Jy,0, Je,1,Jp,15 - - - » Jo,m,» Ji,m) OF [q] defines the set

ng:={xeS" | J(x) =J},
which is an element of J1¢ ), provided it is non-empty.

Remark 2527. Less formally, the construction of J1¢\ can be described as follows: the ith
row of the matrix A € R7*(™*1) defines a partition of R into (—oo, A1), {Ai1}, Nits Ni2),- .,
(Ni.m=1-Aim), {Ai.m}, and (Aj.m, o). The product of these partitions of R, for i € [q], yields
a partition of R9. By taking the preimage of this partition with respect to f, we obtain Tg .
So the sets of this partition just indicate us the location of a value f (x) = (y1, ..., yq) € RY
within the discrete grid provided by the matrix A. 19

Definition 2525, [92; Definition 3.6]. Let f € Hy[g] and A € RIX(™*1) pe a matrix whose
entries satisfy 0 = Ajg < Aj1 < --+ < Ajm, for each i € [q]. To each point x € S" we
associate the following sets:

(o) Forall0 < k < m, lek(x) := {7 € [q] | [f:(x)|/IIfillw = Ni}-
(107) Forall0 < k < m, lyk(x) :== {7 € [q] | Nixe < [Fi(X)I/Ifillw < Ajgs1}
(102) lo,m(x) :=={i € [q] | Niom < [F;(x)/IIfillw}-
This defines the ordered partition of [g] (in which we allow empty sets):
(%) = (lo0(x): .0 (X): Lot (X), 5.1 (%), . oo (X): lp =1 (X). Lo (X). lg.m (X))
The point x also determines the tuple of sign conditions o(x) € {-1,0, +1}9 given by
(S) oi(x) :=sgn(fi(x)) for i € [q].

It is clear that the fibers of x — (I(x), o(x)) induce an equivalence relation on S”. We define
the (f, A)-partition Mg as the set of equivalence classes of this relation.

An ordered partition | := (le 0, l§,0 - - - le.ms ly.m) Of [q] together with a sign vector ¢ €
{-1,0, +1}9 defines the set

Mo = {x € S" [ 1(x) =1, o(x) = o},
which is an element of ¢ ), provided it is non-empty.

Remark 2528, Note that (f, A)-partitions are just a particular case of (£, A)-lartitions. They
correspond to the case in which each row of A is symmetric with respect to the origin.
However, in the symmetric setting where this is needed, (f, A)-partitions are better, because
they encode this symmetry in the sign vector o. 19
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Remark 25%9. The term “lartition” is just a language play with the notation that we use.
While we denote the (f, A)-partition by IM¢ x, we denote the (f, A)-lartition by J1¢x. So the
difference in the initial letter reflects the change in the initial letter of their names. 1
Example 2525, Letn = 1,q = 1, f = (XY) and A = (0, V3/4). We can see that, in this
case, J1r \ has exactly five elements. The zero-dimensional pieces are

) 2727\ 22 2

2

2

{(1’ 0)’ (_1’ O)’ (0’ 1)’ (O’ _1)} and {(
and the one-dimensional pieces
{(x,y) € S?* | 4xy > V3}, {(x,y)€S?*|0<4xy < V3} and {(x,y) € S?* | xy <0}.

This is represented in Figure 25%2. We can see that none of the strata of J1¢  is connected,
so the strata might be topologically complicated. A

Example 25%6. [92; Example 3.8]. Figure 2523 shows, locally, an example of a (f,\)-
partition on S? with ¢ = 2, m = 2 and A1i = Ao = A;. The thick curves correspond
to the zero sets for f; and f;. The dashed lines are level curves (for both f; and £;) with
levels —A; and A; and the dotted curves are the same for the levels —A, and A,. All these
curves partition the picture into 36 two-dimensional open regions, 60 open segments, and
25 points. Each of these 121 regions corresponds to an element in ¢ . We write down the
details for some of them in Table 2. 1. A

The following two theorems give sufficient conditions on f € Hg[g] and A € RIX(M+1)
for the (f, A)-lartition and (f, A)-partition of S” to be a Whitney stratification.
Theorem 2525, Let f € Hy[q] with K(f) < oo and assume N € RI*™ satisfies for i € [q],
. <A1 <Ajs< <Aim< !
— i1 2 < 3 =
\/5 K(f) 1 ! ,m \/5 K(f)

Then the (f, N)-lartition I¢ y is a Whitney stratification of S”. Furthermore, under these con-
ditions, the following holds:

(2.11)

(1) The codimension in S™ of each stratum ny equals 3.y, lle x| = g — 2y llo.kl-

2) Given ng € ¢\ and a € Jy x for some k € [m — 1], the map

fa,J Ny — ()\a,k» )\a,k+1)
x = f(x)/ [ fallw

is a surjective submersion.
Theorem 2526, [92; Theorem 3.9] Let f € Hy[q] with K(f) < oo and assume N €
RI*(m+1) satisfies for i € [q],
1
V2R(F)

Then the (f, N)-partition Mgy is a Whitney stratification of S". Furthermore, under these
conditions, the following holds:

0=ANo<A1<--<Aip< (2.12)
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N\

N

Figure 2522: J1 5 with £ = (XY) and A = (0, V3/4)

le.o | loo | ler | ot | le2 | g2 c
Xn | @ | @ | @ @ o | {1,2} | (-1,-1)
x| 2 | @ | @ |{L2}| @ @ (-1,-1)
x| @ | @ | @ @ {2} | {1} | (+1,-1)
x| @ | {2}] @ %) %) {1} | (-1,+1)
x| 2 | @ | @ |{1L,2}| @ @ (-1,+1)
x| 2 | @ | {1} @ {2} @ (+1,+1)
xs | {2} | 2 | @ %) @ {1} (-1, 0)

Table 2.1: Some points in Figure 2523 and their ordered partition and sign vector.
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(1) The codimension in S™ of each stratum ny s equals 3.7, llex| = g — X7 Ikl
(2) Given i € MNfx and a € |y x for some k < m, the map

fa,l,o Mg — O\a,ka }\a,k+1)
x = |01/ 113 llw

is a surjective submersion.

Remark 25210. Recall that the condition “a € J; 4 for some k € [m — 1]” can be less
cryptically written as “f,(x)/||fallw € (AaksAak+1) for some x € mig and k € [m — 1], or
simply as “f,/||fallw € (Aak>Aak+1) On Mg for some k € [m — 1]”. Similarly, the condition
“a € Iy for some k < m” can be rewritten as “|f;(x)|/[|fallw € (Aak,Aak+1) for some
x € Mgand kK < m”, orsimply as “|f5|/||fallw € Aaks> Aak+1) ON Mg for some k < m”. 9

The following lemma, which is a simple consequence of the Implicit Function Theorem,
will be instrumental in the proof of the above theorems.

Lemma 2527, [91; Lemma 4.9]. For given f € Halq] put g; := f;/|f;|. Fix x € S", and let
r > 0 be such that V2X(f)r < 1. We define the index set

S:= {’E{L,q} | |g/(X)| Sr}

and set i := g5(x) € RS. Then |S| < n, and there exist an open neighborhood Oy of x
in S™ and g > 0 with the following properties:

(t1) We have |gi(y)| > rforalli ¢ Sandall y € Oy.
(t2) Forall i such that gi(x) # 0, the sign of g; does not change on Oy.

(t3) The set Zx = {y € Ox | fS(y) = fS(x)} is a smooth submanifold of S™ of codi-
mension |S|, and there exists a diffeomorphism h such that the diagram

> Zx X B(a,€)

o h
gXt A ’
B(a, €)

commutes (that is, for every i € S, gi becomes a coordinate projection in the coordi-
nates on Oy given by h).

We will call the pair (O, h) a trivializing chart at x. We can describe a point y € Oy
by its trivializing coordinates (z,u) € Zx X B(d, €), where u = (uj)jes and h(y) = (z,u).
In these coordinates, the normalized polynomial g; = fi/||fi|lw, for i € S, takes the form
(z,u) — uj.

Proof of Theorem 2525, In order to show that J1¢ ) is a Whitney stratification, we notice that

q
TN = /\ﬂfn?\/ = {07:1“" | ni € TTr}
i=1
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where A; := (Aj1,..., N m) is the ithrow of A and J1¢ », is the (f;, A;)-partition of S”. Thus,
by Proposition 2521()), it is enough to show that each Tz ), is @ Whitney stratification and
that gz, - - -, J1f, 0, @re transversal.

Note that J1¢ ), consists of open sets of the form fl.‘l(a, b), with (a, b) an open interval,
or a hypersurface of the form fl.‘l(t), with ¢ = [|fi]lwA;; for some j. By assumption on A, this
implies that for such ¢, |t| < ||f,-||W/(\/§E(f)) and hence, by the regularity inequality (Propo-
sition 1533) and the implicit function theorem, all the hypersurfaces are smooth. Whitney’s
condition b is verified in a straightforward way so that we conclude that Jl, 5, is a Whitney
stratification.

We show now that J1f, z,, - - -, Jlg, 2, are transversal. Let n; € Jlg, y,, fori € [g],and x €
Nj<qn;. Itis easy to check that codim T,n; = 1if/ € Jo k(x) and codim T, 51; = 0 otherwise.
Therefore, abbreviating Je «(Xx) := Uk Je.k(x), we get 27:1 codimTyn; = |Jex(x)]. I

addition, when n; is a hypersurface, we have T,n; = ker D, f;, and thus

q
ﬂTXn,- = ﬂ ker Dyf; = ker Dy FUo+ (%),
i=1

ic)e..(X)

By the regularity inequality (Proposition 1533), the codimension of the right-hand side is
|Je.«(x)]. This shows that JT¢ x,, . . ., ¢, A, are in general position. We conclude that J1r
is a Whitney stratification.

The argument above proves also (1).

We prove part (2) in a standard way. First, we show that fa,J is a submersion, i.e., that
its gradient is not tangent to ny. Then we show that f:a’J is closed. One we have done this,
Remark 2523 finishes the proof, since closed submersions are surjective when the codomain
is connected.

To show that fa,J is a submersion, we fix a point p € ny and take trivializing coordi-
nates around it, using Lemma 2527. In these coordinates, using the notation explained after
Lemma 2527, M,c IS an open subset of an affine subspace given by

Ui =Nk (0<k<m,i€Jex)
(2.13)
ANk SUi<Aiks1r (0Zk<m, [>1,7€Jpk)
whose tangent space is given by the system
{U,-:o (0<k<m,i€Jek)- (2.14)

The map fa,J in these coordinates becomes the linear map U,. To check that fa’J is a sub-
mersion is then enough to check that U, is not identically zero in the tangent space in these
coordinates. Since a ¢ UgJe k, U,, this is the case and so fa,,, is a submersion.

To show that an’J is closed, it is enough to show that for every sequence {x,} in ny, if
{fau(x¢)} has alimit A € (As 4, Aaks1), then there exists x € ny such that £, 4(x) = A,

As S is compact, we can assume without loss of generality that {xx } converges to a
point x” € ny. By continuity, fa,J(X’) = A. Passing again to trivializing coordinates and using
Lemma 2527, we perturb x’ to a point x whose components in these coordinates are as
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follows:
u; +t if for some k we have / € J;« and ulf =Nk

—t ifforsome k we have i € Jyx and u! = Aj k41

uj:=14u: ;

7
!
u; otherwise

with a sufficiently small t > 0. This new point x evaluates to the same value as x’ under fa’J,
since u, = u, as u, = A € (A4, Aak+1) Dy hypothesis; and it belongs to ny. Thus it is the
desired point and we are done. m|

Proof of Theorem 25%6. The proof is analogous to the one of Theorem 2526. Moreover, we
can avoid redoing the proof altogether, by noting that for p € R7*2™+1) given by

Wi == <_>\i,ma ey _}\/,19 09 )\/,1’ ) }\/,m)
fori € [q], .ﬂf"p = I_lf’)\. O

Proof of Lemma 2527. Assume first that S is nonempty. The regularity inequality (Proposi-
tion 1533) implies that D, S is surjective, since V2k(fS) |||1|‘-:S(ﬁ\3v|| < 1. So clearly |S| < m.
Hence the derivative of the map gS at x is surjective as well. The Implicit Function Theorem
implies the existence of a diffeomorphism A and a neighborhood O, satisfying (t3) with Zx
smooth. By shrinking Oy, we can guarantee that properties (1) and (t2) hold. Finally, the

assertion is easily checked when S is empty. |

253 Durfee’s theorem

A fundamental step in the sampling theory of Chapter 4 that will allow us to construct
the simplicial complex homologically equivalent to the considered closed semialgebraic set is
that we need that inclusions of the form S(f, t, ) < S,(f, t, d), with ¢ a purely conjunctive
lax formula over (f, t), to give isomorphisms in homology.

The following theorem is a consequence of results by Durfee [163] concerning algebraic
neighborhoods of algebraic and semialgebraic sets.

Theorem 2531 (Durfee’s theorem). [163; §3]. Let f € Hy[q], t € R® and ¢ a purely con-
junctive lax formula over (f, t). Then for all sufficiently small r > 0, the inclusion S(f, t, ) —
S/(f, t,d) is a homotopy equivalence. O

To apply the above statement, we need a quantified version in which the meaning of
“sufficiently small” is quantified. This is handled by the next theorem.

Theorem 2532 (Quantitative Durfee’s theorem). [91; Proposition 4.6] and [92; Theo-
rem 4.4]. Let f € Hgylgl, t € (=T,T)® and r > 0 be such that V2X(f)(r +T) < 1
and LL(t) > 2r. Then for every purely conjunctive lax formula & over (f, t), the inclusion
S(f,t, ) — S,(f, t, d) is a homotopy equivalence.

We actually will prove a stronger version of this theorem. For f € Hy[q], t € (-T,T)®,
¢ lax formula over (f, t) and a vector r € RY, we define

A~

Se(f. t, @) := B (ﬁ.—l[tj —ritj + 1), 7ty = rj,00), £ (=0, t; + 1] | i € [q), j € [e]) :
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In a more digestable way, S,(f, t, ®) is the semialgebraic set obtained by substituting in ®
the atoms (f; = lIfillwt;) by (f; < Ifillw(t; + i) A (F 2 Il — i), (= [Ifilt))
by (£ > IIflw(tj — i) and (% < [1fliwt;) by (f < Ifillw(t; + ri)), and interpreting the
obtained formula in the obvious way. Note that the the difference between S,(f, t, ®) and
S,(f,t,®), for r > 0, is that while in the latter we do the relaxation with the same r for all
polynomials, in the former we do this with a different constant for each polynomial.

Theorem 2533 (Strong quantitative Durfee’s theorem). Let f € Hy[g], t € (-T,T)®
and r € R be such that

V2 R(F)(IFlleo + T) < 1 and LLL(2) > 2[|F]lco- (2.15)

Then for every purely conjunctive lax formula ¢ over (f,t), the inclusion S(f,t,¢) —
S¢(f, t, d) is a homotopy equivalence.

We move r to 1, with sufficiently small € > 0, so that we can apply Durfee’s theorem
(Theorem 2531). However, we don’t carry out this motion all at once, but one component of
r at a time, so that it can be easily handled with Mather-Thom theory.

Remark 2531. We note that Theorem 2532 together with its proof can be extended easily
to cover the case in which @ is a lax formula, not necessarily purely conjunctive. However,
such an extension would make the proof unnecessarily technical. 1

253-1 Moving r to the unknown known case?

We write r <, ¥’ when r, < rjandfor i # a, r; = r]. We note that whenever r <, r’,
we have the inclusion
Se(f,t,d) CSp(f,t,d)

between the generalized algebraic neighborhoods of S(f, t, d). It is enough for us to prove
the following proposition, because with it we can prove Theorem 2533,

Proposition 25%4. et f € Hy[q], t € (=T, T)® and r,r’ € RI be such that (2 .15) holds
for both rand v’. If for some a € [q], r <, 1, then for every purely conjunctive lax formula ¢
over (f,t), the inclusion S¢(f, t,d) < Sy (f, t, d) is a homotopy equivalence.

Proof of Theorem 2533. Let € > 0 be such that S(f, t,$) < S¢(f,t, ) is a homotopy
equivalence and such that €1 < r. This number exists by Durfee’s theorem (Theorem 2531).

Consider now the sequence r?), ..., r@ ¢ (0, )9 defined by
(k) ri if i > k
r = o
e ifi<k

for i € [g]and k € {0,...,q}. Note that r® = r, r@ = &1 and that for k € [q],
r&) <, r'*=Y_Hence, by Proposition 2534, we have a sequence of inclusions

Se(f,t,d) =Spa)(f, t,d) — Spe-1)(f, t,d) — -+ = S, (f, t,P) = Se(f, t, D)

where each inclusion is a homotopy equivalence. Thus S(f, t, ) < S,(f, t, ) is a homo-
topy equivalence and the proof concludes. m|

2The term “unknown known case” is a punchline which points out that the case stated by the non-explicit
theorem is a known case, but it is unknown as we don’t know when we are in that case explicitly.
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253-2 Moving r one step at a time (Proof of Proposition 2534)

We now apply Mather-Thom theory to prove Proposition 2534, and with it, the quan-
titative Durfee’s theorem (Theorem 2532 and 2533). The main idea is to construct a (£, A)-
lartition that is compatible with the considered semialgebraic sets, so that we can apply
Thom'’s first isotopy lemma (Theorem 2522).

By Proposition 252, we can assume, without loss of generality, that ¢ is in normal
form. It follows from its proof, that the equality S,(f, t, d) = S,(f, t,NF(d)) still holds if we
put r in the place of r, as long as the inequality LLI(¢) > 2||r|| holds. Thus assume that ¢
has the form

N (a2 tallfill) A /\ (s < taollfillw)

nen nen_

A\ (2 trog I Fallw) A (B < tusgllfallw)

nelly

with V4, I_, Vg C [q] pairwise disjoint, o : N, UN_ — [e] and /b, ub : Wiy — [e] such that
foralln € o, tipm) < tubw)-

To make notation less tedious, we will assume that || f;|lw = 1 without loss of generality,
since k(f) is invariant under scaling. Moreover, for fixed a, we will write r := r,, r’ := r}
and

Cp =5y, (F, t, )

forry := (ri,...,ra1, P, ray1, - .., rg). With these notations, observe thatr, = rand r,, =
r’. And so we only need to show that the inclusion t : C, — C,~ is a homotopy equivalence.

Consider now T, 7" > ||F'||o sUch that T < 7, V2&(F)(T+T") < 1 and LLi(t) > 21". We
define A € R9** as follows

(tai) = T's ta(i)y = T ta(i) = i» ta(i))s ifi#aandielW,
(ta(a) = s ta(a) = Ts ta(a)s ta(a) + 1),  fi=aely
(ta(i) ta(iy + Ii> tai) + T> ta@iy + 1), ifi #aandiel

A — (ta(a) = T ta(a) ta(a) + T taa) + 7). fi=aell
(t16(i) = Iis tiv(i)s tib() + Fis tb(iy)s if i # a, i €Wyand /b(i) = ub(i)
(tib(a) = Ts tib(a) tib(a) + T tipa) + 1), ifi = a € Vlpand Ib(a) = ub(a)
(t16(i) = Fis tib(i)s Lub(i)> tub(i) + i) ifi# a,i€Wyand/b(i)# ub(i)
(tib(a) = T, tib(a)s tub(a)s tub(a) + T), ifi =a¢€Wyand/b(a) # ub(a).

The choice of A is done in a way that the strata of J1f  intersect nicely with the C,,. In orther
words, so that we can prove Proposition 2535 and 2536.

For the sake of simplicity, we have to distinguish four cases: 1) a € 1., 2) a € V_, 3)
a € Vp with I1b(a) = ub(a), and 4) a € Wy with I1b(a) < ub(a). We will just do the cases
1) and 4), because the case 2) can be easily reduced to the case 1), by changing (f, t) to
(—f,—t), and the case 3) is analogous to the case 4).
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Case1)acll,
From now own, we assume that a € V... The following proposition shows how the
strata of J1r  intersect the C,.

Proposition 2535. (1) C; is a union of strata of Jg .

(2) Let p,p’ € (0,T). For each ny € I\ such that ny € C, the following holds:
() naNCp =aiffngNCy = @. In this case, ny C £, (tua) — 1)
(i) 1y N Cp = nyiff ng N Cp = Ny. In this case, ny C £, [ta(a), ).
(iii) /f @ # 1y N Cp G Ny, then ny C £, (ta(a) — T, ta(a)) and

With this proposition, we can proceed to the proof of Theorem 2533 in the case in which
ael,.

Proof of Theorem 2533 for a € W1,.. Consider the closed set
Q:=CrnN fa_l(ta(a) — T, taa)) € fa_l(to((a) =T, ta(a))
and the proper smooth map

9 fa_l(ta(a) — T, taa)) — (0,7)

X > t(x(a) - fa(X).

By Proposition 2535, € is an union of strata of J¢ x, particularly of those strata in which
f, takes values in (ty(a) — T, ta(s)). And so, by Theorem 2525 and the given assumptions,
the hypothesis of Thom’s first isotopy lemma (Theorem 2522) are satisfied. In particular, this
means that there is F € € and a homeomorphism h := (8, ) : Q@ — (0,7) X F.

Consider now the linear homotopy

v :[0,1] x [0,T] = [0,T]

v, if y €0, r]

(1—s)y +sr, if y €[r,r'] 2.16)
(s.y) = y4s(r—r) (1 - 2{_‘[) if y €[r’,(r" +71)/2]

v, if y € [(r' +7)/2,7]

that restricts to a continuous retraction of [0, r’] onto [0, r] and that leaves fixed every point
in a neighborhood of {0, T}. Using v, we define the map

0:[0,1]xQ— O
(s, x) = h™ 1 (he(x), v(s, 8(x))).
This continuous map restricts to a continuous retraction of 871(0, r’) = Cpr N £ (ta(a) —

T, ta(a)) ONtO 710, r) = C,ﬁf{,,.‘1 (ta(a)—T, ta(a)), @and it leaves every point in a neighborhood
of the boundary of 2 inside C; fixed. This statement is due to Proposition 2535 and the fact
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that © respects the strata of J1¢ ), since h is a stratified homeomorphism by Thom'’s first
isotopy lemma (Theorem 2522). Because of this last point, it can be extended to a continuous
map

0 :[0,1] X C; — C;

(s, %) 8(s,x), ifxeQ
S, X) —
X, otherwise.

By the above paragraph, © still restricts to a continuous retraction of C,» onto C,. Hence
the inclusion v : C, — C, is a homotopy equivalence. |

Proof of Proposition 2535, Since the (f, A)-lartition J1¢ ) classifies points in S” according to
the values that f takes with respect to A, we can see that our choice guarantees trivially all
the claims. We prove only the last claim (2)(iii).

By construction of ny, either ny € £~ (ty(a), ), Ny € F taa), Ny € £ (taa) —
T, ta(a)) Or Ny C ! (ta(a)—T). Therest of the options are excluded, since ny € C+. Therefore,
because ta(a)— P € (ta(a) —T» ta(a)) aNd @ # NyNCp & Ny, we must have ny € £~ (ty(a) —
T, tot(a))-

Since ny € Gy, all defining inequalities of G, are satisfied, except at most the inequality
fa > to(a) — p. Thus enforcing this inequality is the only difference between iy and 1y N C,,,
which gives the stated equality. m|

Case 4) a € |y with /b(a) < ub(a)

From now own, we assume that a € W, and that /b(a) < ub(a). As in case 1), we
have a proposition relating the strata of J1¢ ) and the C,. Its proof is analogous to that in
case 1), and because of that, we omit the proof.

Proposition 25%6. (1) C; is a union of strata of ¢ .
(2) Let p,p’ € (0,T). For each ny € I1¢ )\ such that ny € C, the following holds:

(i) aNC,=0iffngNCy = @. In this case, ny < fa‘l({t/b(a) — T, tub(a) + T})-
(i) ng NCp =nyiffng N Cp = ny. In this case, Ny C £ [t1p(a), tub(a))-

(iii) f@ #nyNCpy G ny, then ny C 7 ((tip(a) — Ts tina)) Y (tub(a)s tuba) + T)) and

ngNCo=ngN{x €S" | tipay — p < fa(x) < tupa) + P}

As in case 1), with this proposition, we can proceed to the proof of Theorem 2533,

Proof of Theorem 2533 for a € Wy with 1b(a) < ub(a). Consider the closed set

Q:=Cr N ((tib(a) = T, tina)) U (tub(a)s tub(a) +T))
C ;7' ((triega) = T trna)) U (tub(a)s tub(a) + T))
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and the proper smooth map

8 : 7 ((tioga) = T tiva)) Y (tub(a)s tub(a) +T)) — (0,7)

tiba) — fa(X), I f2(X) < tipa)
X = .
fa(x)— tub(a)s if f,(x) > tub(a)-

By Proposition 2536, Q is an union of strata of J1¢, particularly of those strata in which
f takes values in (tp(a) — T, tip(a)) Y (tub(a)s tub(a) + T). And so, by Theorem 2525 gnd
the given assumptions, the hypothesis of Thom’s first isotopy lemma (Theorem 2522) are
satisfied. In particular, this means that there is F € © and a homeomorphism h := (8, hg) :
Q — (0,T) XF.

With the help of the linear homothopy in (2. 16), we define the map

0:[0,T]XNQ —Q
(s, x) h_l(hF(x), v(s,8(x))).

This continuous map restricts to a continuous retraction of 871(0, r’) = Cp N £, ((t1(a) —
r’, tlb(a))U(tub(a), tub(a) +r’)) onto 8_1(0, r)= Crﬂfa_l((t/b(a) —r, t/b(a)) U(tub(a), tub(a)+
r)), and it leaves every point in a neighborhood of the boundary of €2 inside C; fixed. This
statement is due to Proposition 2536 and the fact that 8 respects the strata of TN, since h
is a stratified homeomorphism by Thom’s first isotopy lemma (Theorem 2522). Because of
this last point, it can be extended to a continuous map

©:[0,T]XCr — C;

(s, %) O(s,x), ifxeQ
S, X) —
X, otherwise.

By the above paragraph, © still restricts to a continuous retraction of C,» onto C,. Hence
the inclusion v : C, — G, is a homotopy equivalence, as desired. |

254 Gabrielov-Vorobjov approximation theorem

The main algorithmic techniques to compute the homology that we have available (see
Chapter 3) work for closed sets. Unfortunately, many natural and well-posed semialgebraic
sets are not closed, such as the semialgebraic described by

(X=Y,Y),(X=Y=0AY>0)V(X=Y>0AY=0)). (2.17)

To circumvent this problem we will rely on a beautiful construction by Gabrielov and Vorobjov
in [186] that produces closed semialgebraic approximations to semialgebraic sets.

The idea of the construction by Gabrielov and Vorobjov [186] is to produce a sequence
of steps, each combining relaxations of closed conditions (equalities and lax inequalities) and
strengthenings of open condition (strict inequalities) of the formula. The sequence is such that
what is missed at one step is covered by next step of relaxations and strengthenings.
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Definition 251. [92; Definition 2.3] Given a monotone formula ® over f € Hy[qg] and pos-
itive & and €, the Gabrielov-VVorobjov (8, €)-block [Bs ¢ (f, ®) is the spherical semialgebraic
set defined by the following rewriting of @,

fi = 0~ [fi(x)| < ellfillw,
# 0w (fi(x) 2 8||fillw) v (fi(x) < =8|Ifillw),

h

fi >0~ fi(x) = 8l|filw,

fi 2 0~ (fi(x) 2 8||fillw) V (Ifi(x)| < ellfillw),
fi <0~ fi(x) < =8||fillw, and

fi <0~ (fi(x) < =8||fillw) V (Ifi(x)| < ellfillw)-

Given 8, & € (0, 00)™, the Gabrielov-Vorobjov (8, €)-approximation MBg ¢ (f, ®) (of order m)
of S(f, @) is the spherical semialgebraic set given by

m
MBoe(f, ®) i= | | MBoye, (F, ). (2.18)
k=1

Remark 25*1. Note that |f;(x)| < €]|fi|lw is just an abbreviation of (f;(x) < g||f|w) A

(fi(x) > —¢l|fillw) and that both Gabrielov-Vorobjov blocks and Gabrielov-Vorobjov ap-
proximations are compact subsets of S”. 1

Remark 2542, The symbol “I'B” used to denote Gabrielov-Vorobjov blocks and approxima-
tions should not be confused with “I'B”, the Greek letter ‘T followed by the Latin letter ‘B’.
“I'B” comes from the initials in the Cyrillic alphabet of the names of Gabrielov (Frabpranos)
and Vorobjov (Bopobees). q

The main result of Gabrielov and Vorobjov is the following one.

Theorem 25%1 (Gabrielov-Vorobjov approximation theorem). [186; Theorem 1.10]. Let
f € Hylq], ® be a monotone formula over f, m € N, and 8, € € (0,0)™. If

0<g <K< K" Kegy K, x1, (2.19)
then, for k € {0, ..., m — 1}, there are homomorphisms

bk : i (MBse(f, @) — M (S(F, @))

and

@k - He(MBs e (f, @) — He(S(F, @))
that are isomorphisms for k < m — 1 and epimorphisms when kK = m — 1. m|
Remark 2543. In the above theorem, the expression 0 < a; < --- < a; < 1 means
that there are functions Ay : (0,1)8% — (0,1) such that 0 < ax < hg(akt1,...,at)

for all k. Unfortunately, no explicit form for the functions hy is given in [186], although in
principle one should be able to determine them from the proof there. However, let us note
that the functions h¢ in (2.19) do not depend continuously on the coefficients of f for an
arbitrary f. This phenomenon can be seen by taking two orthogonal lines and deforming
them continuously onto the same line. |
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Remark 25*4. Homotopy groups (without specifying a base point) are only defined for con-
nected spaces. However, the bijection between my(MBs.e(f, ®)) and my(S(f, ®)) identifies
the connected components of Bs ¢(f, ®) and those of S(f, ®). Therefore we can naturally
interpret ¢¢ : Mk (MBs.e(f, ®)) — Mk (S(F, @)), for k > 0, as the family of maps

{Pk : 1 (C) = M ($Po(C)) | C € my(MBse(f, P))}.

The assumption of connectedness in [186; Theorem 1.70] is only for technical ease of the
exposition. 1
The proof of Theorem 2541 goes beyond of what we aim to cover. Because of this we

invite the interested reader to read it in [186]. The following two examples try to illustrate the
theorem.

Example 25*1. [92; Example 2.6]. Consider the pair (£, ®) in (2.17). For any pair (8, €) with
0 < & < dtheblock Bse(f, ®) is given by

(lx—yl§e\/5/\(y26))v(|y|sg/\(x—yz—ﬁ\/i))

and looks as in Figure 2544. It is clear that this block is homotopically equivalent to S(f, ®).
A

7/

Figure 25%4: The Gabrielov-Vorobjov construction for two open half-lines

Example 2542, [92; Example 2.7] The number m of blocks needed in the Gabrielov-Vorobjov
construction to recover the kth homology group of S(f, ®) may reach the bound k + 2 in
Theorem 2541. This can be seem in the linear case.

For example, let f = (X,Y) and consider

P=X=0AY=0)VX=0AY>0)VIX>0AY=0)V(X>0AY>0)

so that S(f, @) is the non-negative quadrant. Now take any sequence 0 < g1 < &; < €5 <
6y < £3 < 83.

At the left of Figure 2545 we see in light grey shading the block Bs, ¢, (f, ®). It is not
connected; not even the Oth homology group is correct. At the center of the figure we see
that same first block with Bs, ¢, (f, ®) superimposed in a darker shade of grey. Now the
union of the first two blocks is connected (so Hy is correct) but not simply connected: the first
homology group is wrong. We obtain a contractible set, homotopically equivalent to S(f, @),
when we add the third block, at the right of the figure, to the union. A

The main theorem of this chapter makes the < in the Gabrielov-Vorobjov approximation
theorem (Theorem 2541) explicit in the case of a well-posed polynomial tuple.
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I |

[] |

First 'B block First two B blocks Third 'B block

Figure 2845: The Gabrielov-Vorobjov construction for the positive quadrant

Theorem 2542 (Quantitative Gabrielov-Vorobjov approximation theorem). [92; The-
orem 2.8]. In Theorem 2541, condition (2 .19) can be replaced by

1
0<eg1 <& <" <€gnp<dy<—— (2.20)
2k(f)

when k(f) < oo.

Example 2543. [92; Example 2.9]. The simple form of the inequalities in (2.20) requires
well-posedness, i.e., k(f) < co. To see this, consider f = (X, Y,X —-Y) and

B=((X=0)AY>0)V(X=Y=0)A(>0)).

The set S(f ®) consists of two half-lines with a common origin but without this origin. Note

that k(f) = oo. Figure 256 shows S(f, ®) at the left. The center and right parts of the
/ MBo.75.0.5(f, ®) MBo.75.0.25(F, ®)

Figure 28%6: The Gabrielov-Vorobjov construction for an ill-posed system

figure exhibit two Gabrielov-Vorobjov Approximations for it with m = 1 but different pairs
(8, ). The middle part shows that the condition € < & is not strong enough to guarantee
the conclusions of Theorem 2541 for m = 1. An easy computation shows that, in this case,
we need 0 < € < §/2 (as in the right part of the figure). A

The idea of the proof of Theorem 2542 is simple. Instead of proving it from scratch,
we prove that modifications of (8, €) do not alter the homotopy of the Gabrielov-Vorobjov
approximations and we use this to reduce to the case in which we can apply Theorem 2541.
We first show how we will do transform a pair (8, €) satisfying (2.20) into a pair (&', €’)
satisfying (2 . 19) and then we will show how our basic transformation preserves homotopy.

25%-1 Moving (8, €) to the unknown known case

We write (8,€) <p; (8’,€") whene = &', §; = 61’. for j # i, and §; > &]. Similarly,
we write (8,&) <g; (8’,&’) when 8 = &8, ¢; = giforj # i,and g; < . Note that
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the calligraphic index P indicates a difference in a & (and therefore, in an inequality of the
corresponding Gabrielov-Vorobjov system), while a calligraphic & does so for an € (and
therefore in an equality). These relations capture the notion of a difference in only one entry
of & or of &, respectively. The choice of the inequality in the es and the &s is different. This
is done to ensure that if either (8,€) <p; (8’,€") or (8,€) <g, (8', €’), then we have, for
all formulas ® over f, the inclusion

MBs,e(f,®) C By o (f, D) (2.21)
between the corresponding Gabrielov-Vorobjov approximations. We write
(8,€) 25 (8,¢)
to denote that
(8,€) <p, (8,¢&") or (8,€)<p,;(8,¢€).

This notation is consistent with the meaning of updating (8, €) to (8’, €”) by updating (either
increasing or decreasing) only 8; to &7. We similarly define (8, €) & (8’,€").
The following result states the main property of these rewritings.

Proposition 2543. [92; Proposition 3.1]. Let f € Hy|q], ® be a strict formula over f, and
8,8, e,€ € R™ be such that both (8,€) and (8',€’) satisfy (2.20). If either (8,€) 24
(8",€") or (8,€) 55 (8', €’), then the corresponding inclusion (2 . 21) of Gabrielov-Vorobjov
approximations induces a homotopy equivalence.

Proving Theorem 2542 from this proposition is easy.

Proof of Theorem 2542, By the definition of <, it is clear that there exist at least one (8, £)
satisfying both (2.19) and (2. 20). For any (8, €) satisfying (2.20), we can easily construct
a sequence (8(0), e(o)) e, (8(€), s(")) of pairs satisfying (2 . 20) such that

1 (5(0),8(0)) = (8,¢),

2, (s<f>, s<e>)

3. foreach p € {0,..., ¢ — 1}, thereare k, € {D,E} and i, € {1, ..., m} such that

(8, €), and

(5(/0)’ s(p)) Kpuip (5(p+1),s(p+1)) _

For such a sequence, the isomorphism types of the homology groups of I’Bs(pﬂ)’e(pﬂ) (f, D)
don’t change at each step as a consequence of Proposition 2543. Thus Bg ¢ (f, ®) has ho-
mology groups isomorphic to those of I'st(f , ®). The conclusion now follows from applying
Theorem 2541 to the latter. m]

We next focus on the situations (8, €) 2y (8’,€’) and (8, &) S (8', €’). These situa-
tions correspond to replacing &; in the first one and g; in the second one by some { € (g, 8/).
Even though we are updating only one entry in the pair (8, €), we have to modify the inequal-
ities associated to several polynomials. Instead of doing this replacement simultaneously in
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all the inequalities, we do it by steps, in the inequalities corresponding to a single polynomial
at a time. With this intuition at hand, we introduce the semialgebraic sets below.

Fix f € Halq], a strict formula @ over f, positive numbers 8, €, {, t,and a € {0, ..., q}.
We define the following spherical semialgebraic sets:

I'Bé)s’f’m(f, ®) is obtained from ® by rewriting

fi =0~ |fi(x)| < ellfillw
fi(x) = 8llfilly 1t/ >a
fi >0~ (fa(x) > t|fallw ifl=a

f(x) = Lllfille T <a (2.22)
fix) < -8llfilly /> a
fi<0w f(x) < -t|follw ifl=a
fi(x) < =Clifillw if/ < a.

ng,’:,z;,t(f’ ®) is obtained from @ by rewriting

10l < ellfillw it/ >a
fi=0~ 0 h(x) <tlfllw /=a

10l < Clifillw - f/<a (2.23)
fi >0 v fi(x) 2 8]|fllw
fi <0~ fi(x) < =8| fillw.

Consider now 8,& € (0,00)", c € {D,E}, i€ {1,...,m}, ae[g]and {, t > 0. We define
the intermediate Gabrielov-Vorobjov approximations as the sets
oi,a L ¢,a
MBg, (F, @) =B, (f.®) U U MBs,.c; (f, D). (2.24)
JEi

In particular, we can see I'B?;i’cat(f, ®) as the result of having replaced &; by € in all the in-

equalities with polynomials fi, . . ., f,_1, and being in the process of making the replacement
in those inequalities with f, with the parameter ¢ moving from §; to €.
We now observe that for , t, t” > 0 with ¢ < t” we have the inclusions

D,i,a D,i,a &E,i,a &E,i,a
rBs,e,g,t'(f’ D) C rBs,s,t;,t(f’ ®) and rBs,s,g,t'(f’ ®) D rBs,e,c,t(f’ D). (2.25)

The crucial fact to prove Theorem 2542 is that these inclusions induce homotopy equiva-
lences.

Proposition 25%4. [92; Proposition 3.2]. Let f € Hg|q], ® be a strict formula, §,€ € R™
satisfying (2 . 20), and let i € [m] and a € [q]. Then,

(1) Forall{ € (e;,8;)and g; < t < t' < g;41 (Where emyy = 1/V2K(f) by convention),

the inclusion I'Bé);f ’Zt,(f ,®) C I'Bg’)éf ; .(f, ®) induces a homotopy equivalence.

(2) Forallt € (g;,8;) and 6j—1 < t < t’ < &; (where &, = 0 by convention), the inclusion

I’Bf,’éf’ o (F,®) 2 I'Bf’;"”z .(f, ®) induces a homotopy equivalence.
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Again, Proposition 2543 easily follows from this result.

Proof of Proposition 2543. Assume that (8,€) <p; (8’,€’) holds. Then &; > &/ and with-
out loss of generality, 8; > &'. The following equalities then follow from the definition of

I'Bé”’;i,t(f, ®) (we omit the (f, @) in what follows for simplicity):

o MBY"! = By,

8.6,8/.5;
D,/,Z _ D,i’a+1 B
. rBs,s,s;.,a; = rBs,e,a;,s,-’ foralla € [g —1],

D,i,q B .
* MBses sy = Boe =IBse

the last one as, by assumption, € = €’. These equalities yield the following chain

_ rrD.il Dl _ rpD.i2 D2 D,iq  _ ,
MBs.e = rBs,s,s;,a, = rBs,e,é;,a; - rBs,a,s;,s,- = rBs,s,s;,a; - = rBs,s,a;,s; =By e,
on which all inclusions induce homotopy equivalences by Proposition 2544(1). Hence Propo-
sition 2543 follows in this case.
For the other cases, i.e., when (8’,&’) <p, (8,€) or when (8,€) 5 (8,€’), we
proceed analogously. m|

25%-2 Moving (8, €) one step at a time (Proof of Proposition 2544)

We have now all the tools needed to prove Proposition 2544 and with it to finish the
proof of the Quantitative Gabrielov-Vorobjov Theorem 2542. We will only prove part (1) of
Proposition 2544 as part (2) is proven in an analogous way.

We fix f € Hylq], a strict formula ® over f, tuples &, € € (0,00)™, an index i € [m],
apoint § € (g/,8;), points t < t’ in the interval (g/,€;11), and an index a € [q], as in the
statement of Proposition 2544 and satisfying the hypothesis given there. Since a is fixed, we
can assume ||f,|lw = 1 without loss of generality after scaling f appropriately.

We also choose positive numbers ¢y, t; satisfying

gi<ty<t<t <t <egi
and define the matrix A € R9*m+2) whose /th row A, is given by

0,€1,61,...,€,0,8/,€41...,€m0m), ifl+#a,
)\l — {( 1 1 l(_, ] I+1 m m) (2.26)

(09 €1, 61’ .5 & tO’ tl’ Si—l-l’ e €my Sm), if / = a.

By construction, this A satisfies (2.12). We will assume these conventions throughout this
subsection without further mentioning them explicitly. The matrix A determines the (f, A)-
partition I which, as we saw in Theorem 2526, is a Whitney stratification of S”.

Recall the intermediate Gabrielov-Vorobjov approximations

L D,i,a
B := I_Bs,s’m(f, D),

defined in (2. 24), for T € [t(, t1). These are compact subsets of S”.
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Proposition 2544 claims that « : By — I'B; is a homotopy equivalence. The basic
idea for showing this is to apply Theorem 2522 to the stratification provided by Mg . Inafirst
step towards this goal, we describe how the strata m o of 1lf » intersect [ B:. The findings
are summarized in the proposition below, whose easy but somewhat cumbersome proof is
postponed to §254-2.

Proposition 2545, [92; Proposition 3.11].
(1) By, is @ union of strata of ' .
(2) Let 1, € (ty, t1). For each mis € Mg such that m s C By, the following holds:

(i) moNIBr =02 ifand only if s NTBy = @. In this case, Nz |fal "2 (20).
(ii) mosNIBr =mgifandonly if me NIBy = Ng.
(iii) /f @ # e NTBy G Mg, then Mis C |fal (o, t1) and

MeNMBr=meN{x eS"||f(x)] =1}

Homotopies preserving 15 )

We are now going to construct the maps and homotopies to show that the inclusion
L: By — B¢ is a homotopy equivalence. For this, we should construct a continuous map
p : B — By and homotopies between the compositions of these maps and the identity
maps.

A first approach would be to move around the points of ['B; \ By and then extend
the maps obtained continuously to the whole space. It is easier though to work in the larger
space By, N |fa] 71 (to, t1), where we can control what happens at the boundary and thus
obtain the continuous extensions.

Consider the open subset M := S" \ £,1(0) of S” together with the smooth map
M — R, s — |f,(x)], as well as the locally closed set

Q =By, N |fa] " (t0, t1) S M.

By Proposition 2545(1), € is the union of certain strata M,e Of [1£.a, namely of those strata on
which |f,| takes values in (¢, t1). We note that the restriction of |f,],

a:)— (to, tl)
x = |f(x)],

is a proper map. Indeed, the inverse image o~ !(J) = {x € By, | f3(x) € J} of a compact
subset J C (to, t;) is a closed subset of the compact set 'B;, and thus compact itself.

By Theorem 2526, TNy, restricts to a Whitney stratification of £ and the map « satisfies
the hypothesis of Thom'’s first isotopy lemma (Theorem 2522). Therefore, there is a subset
F € Qandahomeomorphism h : Q — FX(t, t1) such that the following diagram commutes

QO —% Fx (ty, t1)

\‘ \Lﬂ(to»ﬁ)

(to, t1).
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Moreover, the stratum in which x € € lies only depends on hg(x), that is, if hr(x) = he(y)
then x and y belong to the same stratum of ¢ 5. This is so because h is a stratified home-
omorphism by Thom'’s first isotopy lemma (Theorem 2522).

Consider the following continuous (piecewise linear) map

L: [O’ 1] X [tO’ tl] - [tO» tl]

y ity elt’, tl,

5.y) o | (tl+—t S)y + st’ " ify € [t, t'],
Lt (1= 5) + sZEER) (y - ) iy e [(to +)/2, 1],
y f y € [to, (to + 1)/2).

One easily verifies that this map restricts to a continuous retraction of [t, t;] onto [t’, t1]
that leaves fixed all points in a neighborhood of {ty, t1 }. With the help of v, one defines the
continuous map

y:[0,1]xXQ —Q

(5. x) 1o X, if a(x) & ((to +t)/2,(t1 +t')/2),
’ A~ (he(x), 0(s, a(x))), otherwise.

The properties of v and A imply that this map restricts to a continuous retraction of a™![t, )
onto a~1[t’, t;) that leaves fixed all points in a neighborhood of the boundary dQ N B¢, of
Qin By, (note 00 C |7 ({to, t1})).

We also have that y(s,nis) € i forall s € [0, 1], provided m € Q. This is so, be-

cause the value hg(x) determines the stratum to which x belongs and moreover
he(y(s, x)) = he(x).

Since y fixes all points in a neighborhood of a0 N By, it can be extended to the
continuous map

U [0,1] X By, — By,

(5. %) > y(s,x), ifxeq,
’ X, otherwise.

As we are extending by the identity, all properties of y are inherited by . In other words,
¥ restricts to a continuous retraction of By, N || [t, 00) = (MB¢, \ Q) U a7![¢, ¢;) onto
B¢, N |fa|"1[t’, 00) and it preserves the stratification Mea, ie., we have U(s, M) C Mg, for
all m,c € lM¢ ) contained in B¢, and all s € [0, 1].

We are now ready to conclude. However, as a warning, we note that ¥ does not give a
continuous retraction of ['B; onto I'By. The reasonis that 'B, = B¢, N|f; |t [T, 00) generally
does not hold!

Proof of Proposition 2544. \We first show that for all s € [0, 1],
U(s,msNIBs) CmeNIB;y and ¥(s,MsNIBy) CmgeNIBy.

By Proposition 2545(2), there are three possible cases for each of these intersections.
We only focus on the third one, (iii), since the other two cases are straightforward. In this
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case, we have M N By = M N {x | |fa(x)| = t} and |f,|(Ms) € (to, t1). Thus Mg C Q
and
Mi,c NIB; = Mi,e N |fa|_1[t, OO)

Since this is the case, again by Proposition 2545(2), the same happens for ¢’ and so
Mo N By = s N |f| 7t ).

Since W gives a deformation retract of B, N a*[¢, ;) onto By, N~ ![t’, t1), it preserves
the stratification I'ls », and moreover ¥ gives a continuous retraction of m s N |fa|‘1[t, 00) =
Mo N (MBy, N |fa]7H[¢, 00)) onto nye N || 7[t’, o0). Hence ¥ must preserve my; N B, and
M, N By and we have shown the claim.

We conclude that ¥(s,B;) € I'B; and ¥(s,By) C By forall s € [0, 1].

This allows us to restrict ¥ to obtain continuous maps

@ : [0, ].] X |_Bt — |_Bt and @, : [O’ 1] X rBt' — rBt'
(s, x) — VU(s, x) (s, %) > (s, x).
Let p : I'B; — By be the continuous surjection given by
x = U(1,x).

By examining the three cases of Proposition 2545(2), we see that p is well-defined. Recall
that v : By — By is the inclusion map. By construction, we have

©p =idrg,, ©1=p=top, ©O)=idp, and O] =poL

Hence, both (idrg,, L © p) and (idrg,,, p © L) are pairs of homotopic maps. Thus t induces a
homotopy equivalence as desired. |

Intersecting B with strata (Proof of Proposition 25%5)
Arguing as in the proof of Lemma 2523, we can assume, without loss of generality, that
® is already in saturated normal form, since this does not change any of the 'B-sets. So we

o=\/ b

Ee=

write

where each ¢ is saturated.
As we can take out unions in (2. 24), we have

Di, D,
MBe =By (F, @) = | )| TBy2 ,o(F, be) U () TBoy e, (F, de) |- (2.27)
Ee= J#E
Hence it is enough to consider how the different strata intersect with the sets in the right-
hand side. This is done in Lemmas 2546, 2547, and 2548 below. We recall that we assume
|| f2llw = 1 without loss of generality.

The first lemma deals with the 'B blocks of the form IBs, ¢ (f, d¢) with j # 7, the
D,a
Bsiﬁei,c,to’

I'B?’:, - with T € (to, t1). Of these, the third lemma is the most delicate one, as in this case,

the I'B blocks do not decompose as a union of strata.

second lemma with those of the form I and the third lemma with those of the form
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Lemma 2546. [92; Lemma 3.12]. Let ¢ be a saturated formula over f, let j # i and put
6 :=§;, € := g;. Forevery ni5 € If ) the following are equivalent:

(011) M N MBse(f, d) # @.
(012) Mg C Bse(f, §).

(013) sgn(¢) < o and forall | € [q],

1fil/Ilfillw < € on e, if sgn;(d) =0,
i1/ Ilfillw > & on Mg, if sgn;(¢) # 0.

Proof. The chain of implications from (0I3) to (012) to (OI1) follows directly from the definition
of M. Therefore we only show that (OI1) implies (OI3).

Let x € M NTBse(f, d). Foreach | € [q], we distinguish three cases:

+) If sgn;(d) = 1, then x € Bse(f,d) implies fi(x)/||fillw = 8. Therefore, o; =
sgn(fi(x)) = 1 > 1 = sgn;(¢) and |fi|/||fillw = & on M. The latter because &
appears in in A, and so either all x € n satisfy |fi(x)|/]|fillw = & or none of them
does.

—) If sgn;(¢) = —1, the argument is analogous to that of the case sgn,;(¢) = 1.

0) If sgn;(d) = 0, then x € Bs(f, d) implies |fi(x)|/||fillw < €. This, in turn, implies
111/l fillw < € on M, Since € appears in A, and so either all x € m satisfy this or
none does. Also 0 < 0, +1, -1, and so sgn(f;(x)) < oy.

O

Lemma 2547. [92; Lemma 3.13]. Let ¢ be a saturated formula over f. For every Mo € lMfa,
the following are equivalent:

(111) A N rB?j o (fd) 20

(112) Mo S TBg 2, (F. ).
(113) sgn($) < o and, forall | € [q],

1fil/Ifillw < &;on g, if sgn,(¢
¢)#0and /! > a,

) =
) #
¢)#0and/ = a,
161/IIfillw = Conn, if sgn;(d) #0and ! < a.

11/lfillw = &; on My, if sgn;
1fil/11fillw = to on mis, if sgn,

(
(
(
(

Proof. The proof is analogous to that of Lemma 2546, but longer as we must now divide
into cases depending not only on sgn,(¢$) but also on whether / > a,/ = aor/ <a. 0O

Lemma 25%8. [92; Lemma 3.14]. Let ¢ be a saturated formula over f and s € (ty, t1). For
every N € [fa the following are equivalent:

(211) e NTBy2 PRGESERS
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212) sgn(d) < ocand forall | € [q],

Ifil/Ifillw < & on nig, if sgn;(d) =
o) #0and |/ > a,
1611 /11fillw > to on e, if sgn;(¢) #0and | = a,
)

(
Ifil/Ifillw = 8&; on mis, if sgn(
(
171/ Ifillw = L on g, if sgn;(d) #0and ! < a.

Additionally, if any of the two claims above holds,

Mo N{x €S"||fh(x)| =1}, if|fal(to, t1) € Mg,
ﬂl,omrB?:CT(fad)): l,o { | | a( )l } |a|(0 1) l,o (2.28)
' Mo otherwise.
Proof. The implication from (2I1) to (212) is shown in a similar way as those from (0I1) to (0I3)
in Lemma 2546 and from (111) to (113) in Lemma 2547. We next prove the reverse implication.
Assume then that (212) holds. From the conditions there and the definition of both ny s

and MBg 2 | (f, ), it follows that

Mo N I'B8 e gs(f’d)) =nmeN{x €S"||f2(x)| > s}. (2.29)

We next divide in cases depending on whether mys C |fa| ! (to, t1) or not.

) If1fa](to, t1) € Mis, then |f5| > ¢, on nig, by (212), since t; is the next value in A,. This
shows that
Mo N {x € S" [ |fa(x)] > s} =M. (2.30)

As Ny is non-empty, (211) follows from (2.29) and (2. 30).
Q) If, instead, |f,|(to, t1) € mi,c then, by Theorem 2526(2), the map

Mo — (to, t1)
x = |f(x)]

is surjective. Hence mjc N {x € S” | |f,(x)| = 1} is non-empty and (2I1) also follows
in this case.

We have proved (2. 28) in passing. O
Now we finish the proof of Proposition 2545 with the help of the above three lemmas.

Proof of Proposition 2545. Part (1) follows directly from Lemmas 2546 and 2547 since these
lemmas guarantee that each set in the right-hand side of (2. 27) is a union of strata.

We now show part (2). Consider the intersections of m s with the decomposition (2. 27)
for By and ['By,.

If for some j # 7 and § € = we have mic N Bs, ¢, (f, dg) # @, then this intersection
equals My, by Lemma 256 and all the claims of (2) hold trivially since njs N I'B5j,5j(f, de)
does not depend on the value of T.

Assume instead that for all j # / and § € = we have nic N Bs, ¢, (f, d¢) = @. Then

Mo NMBe = | Jmo NTBLY , (F, de)
Ec=
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and
Mo NTBy, = JmeNTBEZ , , (F,de).
Ee=

By hypothesis on s, we have g N By, = M # @ which implies that there exists
&€ € ZsuchthatmgeN I'Bg”;’c,to(f, $e) # @. Lemma 2547 then ensures that the conditions
in (113) hold true. But these conditions are the same as those in Lemma 2548(212) except
for I = a, where the inequality is strict in the latter and lax in the former. This means that
Mie N I'Bg’)e’f&(f, ®) = @ ifand only if |f;| = ty on mi . Furthermore, this latter condition is
independent of the particular value of 1. If it holds for T, then it holds for t” and viceversa.
This proves the first claim of (2).

Arguing as above, we have that m N FBg’)éfg’s(f, Q) = ngifandonlyif |f,| > t; on M.
As this does not depend on the value of T, we get the second claim of (2).

The third claim of (2) follows directly from the last statement of Lemma 258. m|

Further comments

The results in this chapter go back to [88], Proposition 25 3; to [91], quantitative Dur-
fee’s theorem (Theorem 2532); and to [92], quantitative Gabrielov-Vorobjov approximation
theorem (Theorem 2542). However, the proofs of some of these results are very different.

The original proof of the Proposition 2513 in [88] used a continuous version of Smale’s
a-theory (see [88; §3.2 and §4.2]), and it only applies to semialgebraic sets in which t =
0. In contrast to this, our proof used a discontinuous version of the Newton vector field.
Further, we were able to improve the inequality from the original 13D%E(f)2r < 1in [88;
Theorem 4.19] to the current \/§E(f)r <1,inthecase t = 0.

The proof of Durfee’s theorem (Theorem 2532) differs significantly from that in [91] (in-
cluding the adaptation sketched in [92]). Instead of doing the continuous retraction in one
step (as done in [91]), we divide it into different steps. This different proof strategy makes the
proof more similar to that of the Gabrielov-Vorobjov approximation theorem (Theorem 2542),
which helps to introduce the proof of this theorem.

The proof given of the Gabrielov-Vorobjov approximation theorem (Theorem 2542) is
almost identical to that in [92]. Further, there are no significant differences between the two
expositions and, except for some minor changes, the text is the same as that of [92].

On top of these differences, we have enlarged significantly the exposition of the Mather-
Thom theory done in [91, 92]. Apart from being more systematic, we add some new ex-
amples and theorems (such as Theorem 1522 and 1532) to illustrate better the applications
and use of this theory. Further, the reader should note in the proofs of this chapter a repeti-
tious style. This style was intentional and it was to emphasize the main ideas and techniques
behind the application of Mather-Thom theory.
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Pointiller, est le mode d’expression choisi par le peintre qui pose de la couleur sur une toile par
petits points plutdt que de I'étaler a plat.

Paul Signac, D’Eugéne Delacroix au néo-impressionnisme

Computing the homology of a set
par pointillage

The idea of approximating images by dots is an old one. This variant of approximating
the continuous by the discrete made its first appearance in the mosaics of Antiquity. In
engraving, it was introduced by Giulio Campagnola, Ottavio Leoni and others in the 15th
century, and it was later perfected, under the name of stipple engraving, by Jean Charles
Francoise, William Wynne Ryland and Francesco Bartolozzi in the 18th century [Q13; Ch. IX].
In painting, it was introduced, with special attention to the colors, by Georges Seurat and Paul
Signac in the 1880s [Q14], marking the birth of the divisionism (also called, contemptuously
then and popularly now, pointillism).

Aside from the history of art, Paul Nipkow was the first in conceiving with his Elektrisches
Teleskop in 1884 that an image could be recorded using a finite set of pixels (Bildpunkte for
him) [Q10]. His design became the germ that, after the contributions of too many inventors
to mention them one by one, gave origin to the screens that inhabit our technological world.
In these screens, the paradoxical illusion of a continuous image made out of discrete dots
shows how well the discrete can approximate the continuous.

At the beginning of the 21st century, the above idea became the foundation of topo-
logical data analysis. In their study of dynamical systems coming from physics, Muldoon,
MacKay, Huke and Broomhead [295] had the idea of extracting topological information
about the attractor of the system from time-series of data coming from experiments. Al-
though this marks the beginning of topological analysis, they were Robins [333], relying on
work by Robins, Meiss and Bradley [334, 335], and Edelsbrunner, Letscher and Zomoridan
[168, 168] who laid, respectively, the theoretical and algorithmic foundations of this area.

Nowadays, topological data analysis is an established area of mathematics dealing with
theoretical, computational and applied questions about the topological information that can
be extracted about a set from a finite cloud of points approximating it. In this chapter, we
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will expose the ideas and techniques from topological analysis that we will use. Our intention
is not to be complete, but to introduce exactly what we will use later, trying to give some
intuition on the techniques.

First, we introduce the Hausdorff distance, the reach and the Niyogi-Smale-Weinberger
approximation theorem which allow us to guarantee that an approximation is topologically
good; second, we develop some explicit lower bounds' on the reach that will allow us to
control the size of the approximation explicitly; and third and last, we introduce the Nerve
theorem and other algebraic topological results that will allow us to go from the approximation
to the homology computationally.

351 Approximation of sets by clouds of points

The fundamental result of this section is the Niyogi-Smale-Weinberger theorem (Theo-
rem 3518) of Niyogi, Smale and Weinberger [300, 301] which gives precise sufficient condi-
tions for when a cloud of points is a good topological approximation of a set in terms of two
numerical quantities: the Hausdorff distance and the reach.

351_1 Hausdorff distance

The Hausdorff distance is one of the possible distances that one can consider between
sets of a metric space. It is based on the simple idea that two sets X and Y are near if every
point of X is near Y and every point of Y is near of X. Note that this is different from the usual
distance between sets,

dist(X,Y) := inf{dist(x, y) | x € X, y € Y},
for which X and Y are near if a point of X and a point of Y are near.

Definition 3511. Let X,Y C R™ be non-empty compact subsets, the Hausdorff distance
between X and Y, disty(X,Y), is the real number given by

disty(X, Y) := max {max{dist(x, Y) | x € X}, max{dist(y,X) | y € Y}} (3.1)
where dist is the Euclidean distance in R™. By convention, we define disty(@, X) = oo.

Recall the definition of a (Euclidean) r-neighborhood of a compact set X,

UX,r) == {z | dist(z,X) < r} = | JB(x.r). (3.2)

xeX

The following proposition is immediate from the above definition. It gives a useful equivalent
formulation of the Hausdorff distance, which helps to develop the intuition about this notion.

Proposition 3511, Let X, Y C R™ be compact subsets. Then the following are equivalent:
e disty(X,Y) < r.

e XCUN,ryandY C U r). O

L Unsurprisingly, these bounds are in terms of the condition number.
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The following examples should clarify and justify the use of the Hausdorff distance in
our setting.

Example 35'1. LetX = [0,1/2] and Y = [0, 1] be subsets of R, we can see that dist(X,Y) =
0 since X C Y, but disty(X,Y) = 1/2, since Y € UX,r) = [-r,1/2 + r] if and only if
r > 1/2. This exemplifies why dist is not a good measure of how near are two sets and that
the Hausdorff distance is able to distinguish a proper subset from a set. A
Example 35'2. Let X, = %Z Nn[o,1] = {0,1/k,2/k,...,(k —2)/k,(k —1)/k,1} and
X = [0, 1]. We can easily see that disty(Xk, X) = # which goes to zero as k goes to infinity.
Hence, in the Hausdorff distance, X, converges to X. A

The above example shows a general phenomenon. Recall that an r-net of set X is a
discrete subset N C X such that for every point x € X, there is a point y € N such that
dist(x, y) < r. Itis easy to prove the following.

Proposition 3512, [et X C R™ be compact and N C X be discrete. Then N is an r-net of
Xiff disty(N, X) < r. |

In this way, in the Hausdorff metric, the discrete approximations of a set converge to
it. This is the main reason why we use the Hausdorff metric to measure how well a cloud
of points approximates a set, since we expect that an e-net approximates a set better as €
goes to zero. Also, it is robust in the sense that it allows N not to be included in X, as long
as it is close to X.

We conclude with the following theorem. On the one hand, it justifies why we speak
about Hausdorff distance or metric; on the other hand, it shows that the Hausdorff distance
is a metric with very good properties.?

Theorem 353, [360; Theorems 7.3.1 and 10.7.2] Let S € R™ and K(S) denote the set
of non-empty compact subsets of S. Then disty is a metric on K(S). Further, (S, dist) is
complete (i.e., S is closed) if and only if (K (S), disty) is complete. O

3512 Nearest-point retraction and reach

In a metric space, like R, Urysohn’s lemma is an easy exercise for students as every
closed subset X is just the zero set of the non-negative Lipschitz function disty : z +—
dist(z, X). One can see that the neighborhoods U (X, r) are just the sublevel sets of this
function. For small r, we might expect that the topologies of U (X, r) and of X to be similar,
and this can be made precise in topological terms for arbitrary closed sets [333]. However,
we will concern ourselves with a restricted class of closed subsets for which we can answer
positively the following question: how small should r > 0 should be so that X and U(X, r)
have the same homotopy type?

Our approach to answer this question goes back to Federer [177] and relies on the
so-called nearest-point retraction.

Definition 3512. Let X € R™ be closed, the nearest-point retraction is the partial map
1y : R™ --> X defined by

My () := arg min{dist(z, x) | x € X}. (3.3)

2We state the result for subsets of R for concreteness, but it holds for general metric spaces.



102 Josué Tonelli-Cueto 381

Figure 3511: X, in red, and part of its medial axis, Ay, in blue.

The medial axis of X, Ay, is the set of those points of R™ for which 1y is not defined.

Note that mx(z) is the nearest point in X to z, and that this is well-defined if and only if
this point is unique. With this observation, we can easily see that

Ax={z€eR™|3x,x e X : x # x and dist(z, x) = dist(z, x) = distx(z)}, (3.4)

i.e., that Ay is the set of those points with two or more distinct nearest points in X.

Example 35*3. In Figure 3511, one can see in red the set X and in blue its medial axis Ax.
An observation that should be made in this this picture is that the points of X nearer to Ax
are those of higher curvature. A

Proposition 3514. [177; Theorem 4.8(3,4,5)]. Let X € R™ be closed. Then:
(1) The map myx : R™\ Ax — Xis a surjective continuous map.

(2) The map disty is a C!-function on the interior of R™ \ (Ax U X) such that its gradient is
given by
z —mx(z)
Vx(z) = ———=. 3.5
X2) = ) 8-3)

Proof. 1. The surjectivity is obvious, because for all x € X, x is the unique nearest point in
Xto x and so mx(x) = x.

To prove the continuity, we prove that w commutes with limits of sequences. Let {z, }
be a sequence of points in R™ \ Ay convergingto z € R™ \ Ay. Then,

dist(mx(z), z) < dist(mx(zk), zx) + dist(zk, z)
= dist(z, X) + dist(zx, z) < dist(z, X) + 2 dist(zk, z)
where the first inequality is the triangle inequality, the second one the fact that u +— dist(u, X)
is 1-Lipschitz, and the equality is by the definition of my. Since {zx}¢ is convergent,

{dist(zk, z) }x converges to zero. Therefore, on the one hand, {mx(zx )}« is bounded, and,
on the other hand, for every limit point x, of {mx(zx)}«,

dist(x., z) < dist(z, X).
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The latter implies that x.. = mx(z) since mx(z) is the unique minimizer of X 3 x +— dist(x, z).
We have just proven that {my(z¢)} is a bounded sequence with the unique limit point 1ty (z).
Thus limg e Tix(2k) = mx(z), as we wanted to show.

2. Observe that disty is a 1-Lipschitz function. Also, note that for all z € R™ \ Ay and
allA € [0, 1],

distx((1 = A)z 4+ Ank(z)) = Adistx(z),

since, otherwise, there will be a nearer point to z in X distinct from mx(z).

By the above, we obtain that for all sufficiently small ¢ > 0,

distx(z — tVx(z)) = distx(z) — t.
Therefore, if disty is differentiable at z, then
D, distx(Vx(2)) = 1.
But, since ||D, disty || < 1 by the 1-Lipschitzness of disty, we must have
D, disty = Vx(z2)"

whenever disty is differentiable at z.

Finally, since disty is Lipschitz, disty is differentiable almost everywhere by Radema-
cher’s theorem [217; Theorem 3.7]. But then, by the Fundamental Theorem of Calculus for
Lipschitz functions [217; Theorem 3.3] we have that disty is differentiable and that Vy is its
gradient on RM\ (X U Ay), since Vy is continuous. i

This means that as long as we are away from Ay, the nearest-point retraction my is a
good map and it points to the direction we must take to decrease the distance to X the
fastest possible way.

Reach
To measure how far from the set the nearest point retraction is defined, one considers
the notion of reach.

Definition 3513, [177]. Let X C R™ be a closed set. The local reach of X at x € X, 1(X, x),
is the non-negative quantity
T(X, x) := dist(x, Ax) (3.6)

and the reach (or local feature size) of X, 1(X), is the non-negative quantity

T(X) = inf T(X, x) = dist(X, Ax). (3.7)

xeX

The reach is precisely the quantity we were looking for.

Proposition 3515. [88; Proposition 2.2]. Let X C R™ be a closed subset such that t(X) > 0.
Then for all r € (0, (X)),

Hy : [0, 1] X UX, r) — UK, r)
(t,z) = (1 -t)z + tny(2)

is a continuous retraction of U (X, r) onto X. In particular, for all r € (0, T(X)), X —= U (X, r)
is an homotopy equivalence.
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(a) Two intersecting lines (b) Two tangent circles

Figure 3512: Sets with reach zero, in red, and their medial axis in blue

Proof. Since dist(Hx(¢t, z), nx(z)) < (1—-t)dist(z, nx(z)) = (1—t)distx(z) = (1—-¢t)r <r,

Hy is well-defined. The continuity of Hy follows from Proposition 3514 and that is a retraction
from the fact that for all x € X, nx(x) = X. O

Observation 35*1. Note that an alternative way to define Hy for (t, z) with z ¢ X is by
Hx(t, z) = z — t distx(z)Vx(z).

Since Vy is the gradient of disty, this shows that we have just done gradient descent. |

There are many sets with positive reach, among them the ones with maximum reach,
i.e., reach equal to infinity, being the convex closed sets. However, let us note that not every
set has positive reach as the following two examples shows.

Example 35*4. Consider the set which consist in two lines with an small angle of 6 between
them. In Figure 3512a, one can see the union of the lines, X, in red and the medial axis, Ay,
in blue. In this case, We observe that Ay is not closed, since it misses the intersection point
of the lines, and that T(X) = 0. A

Example 35'5. Consider the set consisting on the union of two tangent circles. As in the
previous example, in Figure 3512b, the set X in red and the medial axis Ax in blue. Similarly
to the previous example, Ay is not closed, because it misses the intersection point of the
circles, and T(X) = 0. A

Normal vector and the reach along a direction

How far can we leave X from x in the direction given by a vector u before the fastest
path to return to X is the reverse of the path traversed til then? This motivates the following
definition, which is a directional version of the local reach at a point.

Definition 3514, [177]. Let X € R™ be a compact set, x € X and u € S™ . The local
reach along u of X at x, ©(X, x; u), is the non-negative quantity defined by

T(X, x;u) :=sup{t > 0 | dist(x + tu,X) = t}. (3.8)

The importance of the above notion is that it will allow us to work in a easier way with
the reach. The following theorem gives the best way of proving lower bounds.

Theorem 35'6. [88; Lemma 2.5] and [177: Theorem 4.8(6)]. Let X € R™ be closed, x € X
and u € S". Then
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(1) (X, x;u) =sup{t = 0| x + tu ¢ Axand mx(x + tu) = x}.
©2) If0 < T(X, x;u) < o0, then x + (X, x; u)u € Ay.
(3) If t(X, x;u) > 0, then (X, x; u) > (X, X).

Proof. (1) Given that x + tu ¢ A, dist(x + tu,X) = t and nix(x + tu) = x are equivalent.
This shows that

T(X, x;u) = sup{t > 0| x + tu & Ax and mx(x + tu) = x}.

To prove the equality, assume that it does not hold. In this case, there is t in between these
two quantities. For this ty, on the one hand, x + togu € Ax and distx(x + tou) = ty; on the
other hand, there is x € X different from x such that dist(x + tou, X) = ty.

Let Y = {x, x}. Then, by elementary geometry, H := Ay is a hyperplane that passes
through x + tou and whose complement is the union of two open half-spaces: U comprising
those points nearer to x and U comprising those nearer to x. Clearly, [x, x + tou) € U.
Therefore, for t > t, sufficiently near ¢y, t < T(X, x; u) and

dist(x + tu,X) < dist(x + tu, x) < dist(x + tu, x) = t,
since x + tu € U; and so
dist(x + 1(X, x; u)u, X) < 1(X, x;u) — t + distx(x + tu) < (X, x; u).

This contradicts the definition of T(X, x; u). Hence the equality must hold.

(2) Let zg = x + ©(X, x; u)u. Assume that zy ¢ Ax. Then, in a neighborhood of zy,
the continuous vector field Vy of Proposition 3514 is defined. By the Cauchy-Peano theo-
rem [180; Teorema 2.2a],

has at least one local solution a : (=8,8) — R™ for some & > 0.
Now, by construction of a,

Da(t) diS’[x(O(’(t)) = Da(t) distx(Vx(a(t))) =1
where the last claim follows from Proposition 35*4(2). Therefore, by the chain rule,
(distx oax)'(t) = 1 = ||’ ()Il,

where the last inequality follows from ||Vx|| = 1.
By the above paragraph,

/t1 o’ (s)|| ds = /tl (disty oa)’(t) ds = distx(a(t;)) —distx(a(ty)) < dist(a(ty), a(t1)).

to to

Therefore
length a[t, t1] < dist(a(tp), &(t1))
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where length ¢y, t1] is the length of a between t, and ¢;. This means that o is a geodesic
in R™ with constant unit speed and so it is of the form

a(s) = zp + su.
But then for t > (X, x; u) sufficiently near to T(X, x; u),
Vx(x + tu) = a’(t —t(X, x;u)) =u

and so mx(x + tu) = x contradicting the equality in (1).
(3) We have that

T(X, x; u) = dist(x, x + (X, x; u)u) > dist(x, Ax) = dist(x, Ax) = 1(X, X)

where the first equality comes from the definition of T(X, x; u), and the first inequality from
2). |

We finish this section with the following proposition which shows for which vectors u we
can guarantee that T(X, x; u) > 0 when Xis a locally closed submanifold around x. Given a
smooth submanifold M € R™ and x € M, recall that a normal vector of M at x is a vector
u € TyR™ such that u is orthogonal to T, M. We denote the vector subspace of normal
vectors of M at x by NyM = T, M+,

Proposition 3517. Let M C R™ be closed and x € X be such that M is a regular manifold
around x. Then for every u € S™1, (X, x;u) > 0iff u € Ny M.

Proof. By the Constant Rank Theorem [275; Theorem 4.12], there is an open neighborhood
B(x, €) of x and a smooth map f : R” — RY such that £71(0) N B(x,&) = M N B(x, ¢)
and such that its tangent map of f at every point z € B(z, ¢), D,f, is surjective. In this
neighborhood, let

Pr,:=1-D,f D,f

be the orthogonal projection onto ker D, f, which for z € M N B(x, g) is just the tangent

space of M, T, M. Note that z +— P, is differentiable and that the values of its derivative

when evaluated at a vector are matrices, of which we will consider the spectral norm.
Consider the following minimization problem

argmin{dist(x + tu, y) | y € M}

which for t < €/2 has its solution in M N B(x, €). Therefore, for such t, by the Lagrange
multipliers theorem [275; Exercise 11-11], we have that for any local minimizerin y € M N
B(x,€), x + tu — y is orthogonal to T, M or, equivalently,

Pf’_y(X + tu — _y) =0.

In the special case in which y = x, this gives Pr ,u = 0 and so u € N, M showing one of
the implications.

For the other implication, assume that v € Ny M and that there is another local mini-
mizer y € M N B(x, €) different from x. Then

y=x+D, F#(y)+D,F'D, F(x=y)=By FF(x) = Pry(y=x) = tPryu = t(Pry~Pr.)u
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since f(x) = f(y) = 0 and P¢ xu = 0. On the one hand,

DP%JL—JWU Il

lt(Pry = Praxull < tllPry —Prxll < t max iy

z€(x,y]

where the last inequality follows from Taylor’'s theorem with remainder; and, on the other
hand,

ly = x +D,f'f(y) +D,f D, f(x - y)-D, fo(x)||

D._Ft D
(12 Buf 5 B F By flx =y =By iL0ll
Ix =yl

1 — =2
> (1 — 5 max [IDy D fllllx —)’ll) Ix =y,
Z€[x,y]

= = a= — )
because ||[D, f'f(y)+D,f'Dyf(x—y)—D,f f(x)|| < 4maxsep, ID,FD,FlllIx—yl?
by the Taylor theorem with remainder.
Combining these two inequalities and cancelling ||y — x||, we obtain

t max
Z€[x,y]

— — 1
D,P; (y—)H (1—- max ID, D f||||x—y||) (3.9)
ly — xl| 2

By continuity of all terms involved, there are & > 0 and ¢, > 0 such that for all y such that

1
(1—5 max ID, D Flllly - x||)

max <ty

Z€[x,y]

and

l\'.)IH

This means that there can be another local minimizer y in the considered region, only if
t > ty/2. Hence x is the unique local minimizer for t sufficiently small, and so T(X, x; u) > 0
as desired. O

351-3 Niyogi-Smale-Weinberger approximation theorem

The Niyogi-Smale-Weinberger approximation theorem gives a sufficient condition for a
cloud of points to approximate the homotopy type of a set. The original versions [300, 301]
had more complicated inequalities and proofs than the version given here [88; Theorem 2.8]
(cf. [109; Theorem 4.6]).

Theorem 358 (Niyogi-Smale-Weinberger approximation theorem). [88; Theorem 2.8].
Let X, X € R™ be compact sets. Assume that T(X) > 0. Then for all € > 0 such that

3 disty(X,X) < € < %T(X), (3.10)

X is a deformation retract of U(X, €). In particular, X — U(X, €) is an homotopy equiva-
lence.
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Proof of Theorem 35'8. Note that
UX, &) € UUX, distu(X, X)), &) € UX, dist(X,X) + ) € R™\ Ay,

since, by assumption, disty(X,X) + € < t(X). Therefore H, of Proposition 3515 is well-
defined for all (¢, z) € [0, 1] X U(X, €). We will show that Hx gives a continuous retraction
of U(X, &) onto X. For this, by Proposition 3515, we only have to show that for all (¢, z) €
[0,1] x U(X, ), Hx(t, z) € U(X, €). By the way that Hy is constructed, we have to show
that for all z € U(X, €),

[z,mx(z2)] S U(X,€).

Let z € U(X,€), z := mx(z) and x € X be such that dist(x, z) < €. If dist(z, x) < &,
then [z, z] C B(x, &) and we are done. Therefore assume dist(z, x) > & from now on. In
this way, let z € [z, z|] be the nearest point to z such that dist(z, x) = €. We only have to
show then that [z, z] € U(X, €). In fact, we will show something stronger, namely, that it is
contained in just one of the balls that constitute U (x, €).

Let

then, since z = z + tu for some t > 0 and nx(z) = z, we have 1(X, z;u) > 0. Hence, by
Theorem 351 6(3),
(X, z;u) > T(X).

Consider now, r := %e. On the one hand, 6r < T(X), therefore t(X, z; u) > 6r and we can
construct 3 := z + 6ru such that my(3) = z. On the other hand, disty (X, X) < r, thus there
is x € X such that dist(x,z) < r.

We will be done once we show that dist(x, z) < €. We note now that

dist(y, z) < dist(y, z)+dist(z, z) < r+dist(z, z) = r+dist(3, z)—dist(3, z) = 7r—dist(3, z),

where the middle equality follows from the fact that z, z and 3 are collinear with z in the
middle. Because of this, it is enough to show

4r < dist(3, 2),

i.e., that z is “far” from 3.

To end the proof consider the triangle xz3 whose vertices are x, z and 3. Now, the
angle © at z of xz3 is the same angle at z of the triangle xzz’, where z’ is the point in |z, 3]
such that dist(x, z’) = €. This last triangle is isosceles, with the considered angle being a
base angle. Thus © is acute. We note that in the degenerate situation, © = n/2 and the
argument below still applies.

Since x is “near” X and 3 “far” from X, we have that

dist(x, 3) > distx(3) — distx(x) > 6r —r = 5r

where we have use that distx(x) < disty(X,X) < r. Finally, by the cosine theorem applied
at ©, we have

dist(x,3)? = dist(Z, 3)* +dist(Z, x)* - 2dist(Z, 3) dist(Z, x) cos © < dist(Z, 3)? +dist(Z, x)*
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since O is acute. From here, we have

dist(2,3) > +/dist(x, 3)2 — dist(z, x)2 > V25r2 —9r2 > 4r.
This concludes the proof. a

Remark 3512, In case the reader does not like proofs a la Peano, i.e., without drawings [Q12],
E can see a diagram of the proof in Figure 3513. In this diagram, we have not only repre-
sented the relations of proximity, but also the metric relations concerning the points involved
in the proof. |

Figure 3513: Diagram of the proof of Theorem 3518

Remark 3513. A version of the above theorem (Theorem 3$18), but with worse constants can
be obtained as a corollary of the Chazal-Cohen-Steiner-Lieutier approximation theorem [109;
Theorem 4.6]. The proof there is more involved, but it is so because their theorem applies
to a more general setting. They do this by using the notions of p-reach, T, and weak reach,
T,,, intfroduced by Chazal and Lieutier [110, 111].

Let us briefly recall these notions. Let X € R” be compact and z € R". Then define
I'x(z) := {x € X | dist(z, x) = dist(z,X)}. Let Ox(z) € R" and Rx(z) € [0, o) to be such
that B(Ox(z), Rx(z)) is the (unique) smallest closed ball containing I'x(z). Finally, consider

the vector field
_ z—06x(2)

Vx(2) = ~gstz)
which is well-defined whenever z # Ox(z). One can see that for z ¢ R™ \ (X U Ax)
this agrees with the one defined in Proposition 3514, However, constructing a flow for this
vector field requires technical tools, since it is not continuous in general, and because the
continuous retraction it gives is only between neighborhoods. In this setting, the p-reach (for
u € (0, 1]) and weak reach are given by

Tu(X) :=dist(X, {z € R™ | ||[Vx(2)|l < p} and tu(X) := dist(X, {z € R™ | ||Vx(z)|| = 0}.
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Note that the reach is just the 1-reach.
1-cos g

\/(1—008 %)2+tan2 $

the acute angle between the red lines and 1, (X) = 0 otherwise. However, in Example 355,
w(X) > 0, but ,(X) = 0 forall p > 0. In general, one can show that for every closed
semialgebraic set, t,, (X) > 0 [111; Proposition 3.6], but one should observe that in order
to make this computational one needs explicit lower bounds. It is not clear how to extend
some of the results that only work for the p-reach, or how to give bounds for the p for which
the p-reach is positive. We discuss this problem in Chapter 5. 19

where 0 is

One can see that, in Example 354, 1,(X) = oo if p <

352 Reach: Explicit lower bounds

In this section, we provide lower bounds for the reach of an intersection in terms of the
reach of the intersection of the boundaries, a lower bound of the local reach of an analytic
set in terms of Smale’s gamma, and a lower bound for the class of spherical semialgebraic
sets we will be working with.

352-1 Reach of intersections
The main theorem we will prove is the following one.

Theorem 3521, [88; Corollary 2.6]. Let {X;};e be a finite family of closed subsets of R™
and 'Y C R™ another closed subset. Then

T(Ymﬂx,-) > min | YO Jaxj .
J €

iel
In particular, T (NjeXi) = mingg T (Njes0X;).
The theorem wiill follow from induction from the following proposition.
Proposition 3522, [88; Theorem 2.4]. Let X,Y C R" be closed subsets. Then
(Y N X) = min{t(Y), (Y N 0X)}.

Proof of Theorem 3521. By Proposition 3522, Theorem 3521 is true for #1 = 1. Assume that
Theorem 3521 is true for #1 < k, we will show that then it is true for #1 < k + 1.
Let | = lg U {iy}. Then, by Proposition 3522,

T(YQQX/) :T((YHQX/) mx,-o)
> min {T (Ymgx,-)m((vnl@x,-) N ax,-o)}_

Since # |y < k, by induction hypothesis,

JCly

T(Yﬂ ﬂx) >mint|YN( )X

i€ly jed
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and, also by induction hypothesis,

T ((Ym ﬂx,-) N ax,-o) g ((Ym OX;,) N ﬂx,-)

i€|0 i€|0

> min T (Y0 ax,-o)mﬁaxj =mint|Yn ﬂ X |.
jed jedudio}

The first is the minimum over subsets of | that exclude iy and the second the minimum over

those that contain iy. Hence, taking the minimum of both of them, we prove the theorem for

#1 = k + 1. By the induction principle, the proof is finished. |

Proof of Proposition 3522, Let z € Aynx and x, x € Y N X be different points such that
dist(z, x) = dist(z, x) = distynx(z). As z is arbitrary, it is enough to check that

diStme(Z) > miﬂ{T(Y), T(Y N aX)}

since, then, taking the infimum over z the desired result follows. We consider three cases:
1) x, x € 0X, 2) x ¢ 0X,and 3) x ¢ oX.
Case 1). In this case, x and x are also the nearest pointsto zin YN X C YN Xand so

distynx(z) = distynex(z) > (Y N 9Y)

which shows our inequality.
Case 2). In this case, x is in the interior of X and so there is some € > 0 such that

YNXNB(x,e) =YNB(x,e),

B(z, distxny(z)), as otherwise x would not be one of the nearest points in Y N X to z, which
contradicts the way x was chosen.
Let

i.e., we cannot distinguish Y N X and Y locally around x. Further, Y N B(x,€) C B(x,€) \

zZ—X
Uu=-—-:,
Iz = x|

which is the unit vector of the line joining x to z. By the above paragraph, we must have
Tyax (X + tu) = my(x + tu) € B(x, €) \ B(z, distxny(2))

for t € [0,min{e/2,T(Y)}). Thus my(x + tu) = x, as this is the nearest point in B(x, €) \
B(z, distxny(z)) to x + tu. Therefore T(X, x; u) > 0 and, by Theorem 351 6(3),

T(Y) < 1(Y, x) < (Y, x; u).

Also t(Y, x; u) < dist(x, z) = distynx(z), by Theorem 351 6(1), since dist(z, x) = dist(z, X)
and x, x € Y. This finishes the proof.

Case 3). This is the same as case 2), but with x in the place of x.

In all three cases, the given lower bound holds. Hence the proposition is proven. |
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Figure 3524: X, in red, and Y, in blue, from Remark 3521

Remark 3521. Although the proof above might look more complicated than that given in [88;
Proof of Theorem 2.4], this is so because there is a small mistake in that proof. In the case
2), it is claimed that disty(z) = dist(z, x) > 0, written there as dw(x) = ||x — p|| > 0.
However, this is false in general, as shown by

X:={x €R?|xo >0}and Y = (S' nX) UB((0,-1),1/2),

illustrated, respectively, in red and in blue in Figure 3524, In this example, one can see that
disty(z) = 1/2 < 1 = dist(z, x) no matter the x that one chooses in Y N X°. q

Remark 3522, A natural question is whether the lower bounds of Theorem 3521 and Propo-
sition 3522 can be extended to the local reach. This motivates the following open problem.

Open problem E. Given X,Y C R closed subsets and p € Y N X, is it true that
(YN X x) = min{t(Y, x), dist(x, Aynox) }?

Or more generally, can we lower-bound T(Y N X, x) in terms of T(Y N X, x), dist(x, Aynex)
and distynox(x)?

We observe that such a claim was made in [214; Theorem 3.10] (cf. [213]), but the
proof there has a mistake which cannot be corrected.® Such a result is fundamental for the
construction of adaptive grid algorithms for homology of basic semialgebraic sets. We will
discuss this further in Chapter 5. q

352-2 Reach of analytic sets

Smale’s gamma (see Definition 1523) plays a fundamental role in the local analysis
of Newton’s method. For example, in the zero dimensional cases, one can show that a
condition for Newton’s method to converge to a zero x of f starting at a point xq is that
dist(xg, x) < %?(f, x)~! [147; Théoréme 91]. Since a point cannot converge to two zeros
under Newton’s method, this implies immediately the following proposition.

Proposition 3523, Let f : R™ — R™ be an analytic function and x € f~*(0) a zero of f.
Then 3Y(f, x) dist(x, F71(0) \ {x}) > 1. m

30n the one hand, it claims W NV € W N dV; on the other hand, it claims that Ay € Ag whenever A C B.
Both of these claims are false, even in very well-behaved settings.
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Now, since x is an isolated point of £71(0) in the above case, this means that

(F1(0), x) = %dist(x, FH0)\ {x}),

which can be proven by considering the midpoint between x and one of its nearest points
in £71(0) \ {x}. Therefore, we have the following.

Corollary 3524, Let f : R™ — R™ be an analytic function and x € f~1(0) a zero of f.
Then 6 Y(f, x)t(f~1(0), x) > 1. o

The main theorem in this section is a generalization of the above result for positive
dimensional zero-sets of analytic functions. This can be interpreted as evidence that the
reach is an analogue in the positive dimensional case of the distance between nearest zeros
of the zero-dimensional case.

Theorem 3525, [88; Theorem 3.3]. Let f : R™ — RY be an analytic map and x € £f~1(0)
a zero of f. Then
14¥(F, x)T(F1(0), x) = 1

whenever Y(f, x) is finite.

We will prove the above theorem as we proved Proposition 3517, but now we have to
be more careful in order to obtain explicit lower bounds and not only positivity.

Proof. Let M = f~1(0) and let’s prooceed as in the proof of Proposition 351 7. In this case,
however, we already have a function which gives globally M as its zero set. As in the proof
there, we will consider for each x € R™ such that Bxf is surjective, the linear map

Prx =1 — DxfDxf

which is the orthogonal projection onto ker D f.
We consider the same minimization problem,

argmin{dist(x + tu, y) | y € M},
and we fix u € Ny M in the following. We will show that
145(F, x)T(FH0), x;u) > 1

from where the claim will follow by Theorem 351 6(3).
By Theorem 3516(1), the smallest ¢ for which this problem does not have a unique
solution satisfies that there is y € M different from z such that

t = dist(x + tu, x) = dist(x + tu, y).

If 7y(f, x)dist(x, y) > 1, then 2t > dist(x, y) finishes the proof. Therefore assume that
7Y(f, x)dist(x, y) < 1 and let n := y(f, x) dist(x, y) < 1/7.

Arguing as in the proof of Proposition 3517, we will arrive again to mequallty (3.9). There
we need to bound maxze|x, y) HD P (”y X”)H and maxze|x,y] ||D fTD || from above.
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Applying the usual rules of differentiation, we have that
D:P(2) = ~Daf ' Dof (2)Pr.c - (Do DL (2)Pr)
forall z and z € T,R™ = R™. Therefore, by Definition 1523,
@)= |p-

since for A = D, fT D, Lf(2)Pr.,, we have A> = 0 and so ||A + A*|| = ||A||. Hence

szf( y=X )‘ <
ly = x|l

5if(z)Pf,z

< 2v(f, )| 2],

max
Z€[x,y]

max 2y(f, z)

Z€[x,y]

Now, recall that in, the proof of Proposition 3517, maxe(x, y] ||5yf753f|| appears when
we bound ||D, f7f (y)+D, fDyf (x—y) =D, fTf(x)|| using Taylor's theorem with remain-
der. As f is analytic now, we can just take the full Taylor series to obtain

IDy £ f(y) + Dy f Duf (x — y) = D, FTF(x)]|

(o)

<2l

(o] 1 _
—DyfTD/;,f(x—y,~--, D fTD f(x=y,---,x—Y)

Y(y. X)lx -yl

Dfo -
=Y, ¥)llx =yl

Ix = ylI* < Zv £, ) Hix - yIlk

Now, by [147; Lemme 132], we have that, under our hypothesis, for all z € [x, y],

Y(f, z) < r(n)y(f, x) (3.11)
where n := Y(f, x) dist(x, y) and

1
(1—t)(1 — 4t + 2t2)°

r(t) :=

Hence, we obtain

max_||D,P¢ ( )H
z€[x,y] ly — x|l
and .
D,fT D.f D W r(n)n
IDy T F(y) +Dyf Dxf(x — y) =D, f F(x)| < ey =X

Combining these two inequalities as in (3. 9), we get
o 1 (1_ r(n)n )_1 , 1L
2r(n) L=r(nn) ¥(f,x) — 7Y(f, x)

where the right-hand inequality can be checked by direct computation using that n < 1/7.

Now, this means that ma(x + tu) = x for t < ﬁand So)
(M. x;u) = =
T X u) 2 ———,
7Y(f, x)

which by Theorem 351 6(3) gives the desired resullt. O
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Remark 3523, The above proof is less elementary than that of [88], although it is essentially
the same proof. However, there is a conceptual difference. While in the proof in [88] it is
not clear why Pr_, plays a role, in the proof above, this is clear as it appears as a result of
optimizing to find the nearest point in M to x + tu. |
Remark 3524. Let us note that there is a deep relationship between reach, curvature and
bottlenecks. The bound of ||D,P¢(2)|| by 2y(f, z) gives also a bound of the norm of the
so-called second fundamental form. We refer the reader to [1; §3], [88; Proposition 3.4]
and [300; Proposition 6. 1] for further comments on this. 19

352-3 Reach of spherical semialgebraic sets

We combine Theorems 3521 and 3525 above to obtain a lower bound for the reach of
a spherical semialgebraic set of the form S(f, ¢, d), when f is well-posed and ¢ is a purely
conjunctive lax formula.

Theorem 3526. [92; Proof of Theorem 2.13]. Let f € Hy[q] and t € (—T,T)® be such that
V2K(f)T < 1. Then, for all purely conjunctive lax formulas ¢ over (f, t),

(2 + «/5) DIR(F)TS(F, 1, d) > 1.
Proof. By assumption on ¢, we can write

¢ = /\(fa(k) o<k tok)ll fagi liw)
keK

with K a finite set, «ce {>, <, =} and maps a : K — [g] and b : K — [e]. Therefore, by
Theorem 3521,

T(S(F. £, 4)) = mint ﬂJ OS(F . () o<k o lIfaci 1) |-
JE

Note that, by our assumption and the regularity inequality (Proposition 1533),
S(f, t, (fi = t;|lfillw)) is a regular hypersurface and so, for all € {>, <, =},

oS(f, t, (fi « tjl|fillw)) = S(F. t, (f; = t;l|fillw)),

by the Implicit Function Theorem. Thus

T(S(F. £.4)) = mint Qsm £, (facey = toiiolfagio ) |-
J€

Because of this, it is enough to prove the bound in the case in which ¢ only has equalities,
i.e., cis (=,...,=). We assume this without loss of generality.

If for distinct k, k” € K, a(k) = a(k’) and b(k) # b(k’), then S(f, t, ) is empty and
we are done. Because of this, we might further assume that ¢ is of the form

o= /\ (i = toglfillw)

lelL
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withL C [g] and b : | — [e]. Further, note that by the regularity inequality (Proposition 1533),
S(f,t,$)isemptyif #L > n+ 1. So we can assume, without loss of generality, that #L. < n
and that S(f, t, ) is non-empty.

Lett e (-T, T)L be such that for I € L, 7/ := tp(||f;[lw. Observe that S(f, t, d) is the
zero set of f- = 7in S” and of (F-—71)g := (F =7, X7, X? — 1) in R"*!. Therefore, by
Theorem 3525,

14 max ?((fL—T)S,X)T((fL—T)_I (0)) > 1.

x€S(f,t.0) S

Now, on the one hand, for all x € S”, ¥ ((f- =), x) = Y (£S, x); and, on the other hand,
for x € S(f, t, d), we have

IF-0ll S (L1
L Sn S S e
| il YR | i V2K(f)
Hence, for x € S(f, t, §),
Dz p(f, x) :
27 ((F- 7)., x) < DEu(F, )+ =2 +1 < V2DER(F) + D +1 < 2+ V2)DER(F),
S V2K(f)

due to Corollary 15212 and the inequality p(f, x) < V2Kk(f) which follows from the regularity
inequality (Proposition 1533) and V2K (f)||f-(x)||/|If"llw < 1. This finishes the proof. O

Remark 35%5. We note that the hypothesis of Theorem 3526 that requires ¢ to be purely con-
junctive cannot be dropped. The reason for this is that in general, the union of semialgebraic
sets has zero reach, even in the case that the underlying polynomial tuple is well-conditioned.
An explicit example can be )|
Example 3521. Consider f = (X+Y,X=Y)and ® = (X+Y = 0)A(X=Y > 0)) V((X+Y <
0) A (X =Y < 0)). One can see that S(f,®) C S? has reach equal to zero, due to the
crossing of the two lines at (O 0 1)*. A local image of the set around that point can be
seen in Figure 3525, A

Figure 3525: A semialgebraic set with reach equal to zero

353 Homology of a cloud of points: the nerve theorem

Covers play a fundamental role in topology, as in compactness and (topological) di-
mension. Further, triangulations and CW decompositions can be seen as covers with a
strong combinatorial structure. Among all these topological concepts, one that will play a
fundamental concept in this thesis will be the nerve of a cover introduced by the topologist
Alexandrov.
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Definition 3531. [5]. Let X be a topological space and C a finite cover of X. The nerve of
C, N(C), is the (abstract) simplicial complex given by

N(C):—{cgmﬂcq&@}. (3.12)
Ceo

One can see that this notion captures the intersection relations of the elements of a
cover. A highly non-trivial result is the following theorem,* which says that this intersection
relationships capture the homotopy type of the space when the pieces and all intersections
are topologically trivial.

Theorem 3531 (Nerve theorem). [216; Corollary 4G.3]. Let X be a compact space and C
a finite open cover of X satisfying the Leray property:

for every C' C C, Nyec V is contractible.

Then X is homotopy equivalent to [N (U)].

This form of the nerve theorem is not always the best. Because of that, we will develop
below the statement of the theorem that best suits our objectives. Also, we will introduce a
graph variant of the nerve that will play an important role in making our algorithms faster.

353-1 Simplicial complexes and the computation of their homology

We define what a simplicial complex is, we indicate how the homology of a simplicial
complexes is defined and we give an algorithm for computing this homology, based on this
definition.

Remark 3531. We don’t intend to introduce the concepts, but we recall them to fix termi-
nology and notation. q

Abstract simplicial complexes and their realizations

Since our focus is computational, we will view simplicial complex just by their combi-
natorial properties, i.e., by how their faces are contained in other faces. This is modelled by
the notion of abstract simplicial complex.

Definition 3532. Let X be afinite set. A (abstract) simplicial complex over Xisaset S € P (X)
of subsets of X such that forallc € Sand all6 C o, we have 6 € S.

Remark 3532, We will refer to the elements of S as the faces of S and to the elements of a
face o of S as the vertices of o. |

This is not a topological space. It is just a family of subsets. However, we can associate
to it a “canonical” topological space. Consider the free simplex with vertex set X, which is
defined as the set

A* = {th[x]|forallxex, tXZO,thzl}QRX (3.13)

xeX xeX

4We will sacrifice generality for an easily understandable statement.
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formed by the formal convex combinations of the points of X. Here we use the notation [x]
to distinguish the vertex [x] in A% from the point x in X. If X € R™, this avoids an ambiguous
notation.

Now, for every o € S, the simplex A° lies inside AXand it is a face of it. Further, this is
compatible with intersections, because for all 0, ¢’ € S, A% — A® N A% This motivates
the following definition.

Definition 3533. Given a simplicial complex S over a finite set X, its realization is the topo-
logical subspace [S] of AX given by

S] ::U{A°|GGS}. (3.14)

Whenever we work with topological spaces and continuous maps, the realization of
the simplicial complex will be used. For example, this will be done in our statement of the
functorial nerve theorem.

Remark 3533. Note that the realization of a simplicial complex above can be viewed as a
construction of an equivalent geometric simplicial complex.

Definition 35%4. A geometric simplicial complex in R™ is a set S of simplices of R™ such
that

0 Forevery o € Sand every face c of 0, 6 € S.
N Foreveryo,c € S, oNois aface of o.

One should note that geometric simplicial complexes are like simplicial complexes, but
keeping track of how the simplices lie in some ambient spaces. As this information is irrele-
vant for the homology of a simplicial complex, we prefer to use abstract simplicial complexes
instead of geometric ones. )|

Homology groups of a simplicial complex

Let us recall how the simplicial homology of a simplicial complex is defined. We consider
simplicial subcomplexes of our simplicial complexes and their boundaries. Topological holes
are interpreted as those simplicial subcomplexes that behave like a boundary, but they are
not a boundary. The main idea behind homology is to find an algebraic way of dealing with
the boundary condition, by just counting the faces with orientation.

Consider a simplicial complex S over a finite set X, the dimension of a face o of S is
given by

dmo:=#0c -1, (3.15)

i.e., the number of vertices of o minus one. We consider the set of k-dimensional faces, or
simply k-faces, of S,
Sy :={ce S |dm o=k}, (3.16)

and to each of these set of k-faces we associate the free Z-module

Ce(8S) = 75 :—{Z N o | nOEZ} (3.17)

GGSk
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of formal combinations of faces. Each of these formal combinations is called a k-chain.

To get a nice formula for the boundary operator, we choose an ordering of X. To define
this order, we just number the elements of X by a bijective map o : X — {0,...,#X —1}.
This map then induces the map

0s:0— {0,...,k}
vis #{x eo|o(x)<o(v)}
on each k-face o € S. One can see that this numbering is compatible with inclusions, in the

sense that given faces 0,6 of S and v, w € 6 C G, 05(V) < 05(W) iff 05(v) < 05(W).
Once we have fixed this order, we can define the kth boundary operator

AF - CL(S) — C((S) (3.18)
which is the Z-linear map given on each k-face o of S by
9 (0) = D (1)*M (e \ {v}). (3.19)
VEC
One can esily check that for all kK > 0,
akA © akAH =0

which is an algebraic version of the intuitive statement that boundaries of simplicial subcom-
plexes don’t have boundaries. By convention, aOA = 0. This motivates the definition of two
submodules of k-chains:

Be(S) :=im o, (3.20)
which are called k-boundaries, and
Z2(S) := ker 99 (3.21)

which are called k-cycles. One can check that these two submodules are independent of
the ordering o on X, although the dkA are not, and that k-boundaries are always k-cycles.
Coming back to the intuition at the beginning, a topological hole is something that be-
haves like a boundary but it is not a boundary. In this setting, the first is to be a k-cycle and
the second to be a k-boundary. Therefore a “topological k-hole” is a k-cycle that is not a
k-boundary. This motivates defining the kth (simplicial) homology group of S as
A
Hf(S) = ;Z((gi
k

One of the most fundamental theorems of algebraic topology is the following one.

: (3.22)

Theorem 3532, [216; Theorem 2.27]. Let S be a simplicial complex over a finite set X. Then
there is a natural isomorphism

HA(S) = Hd([S])
between the simplicial homology of S and the (singular) homology of [S]. |

In this way, when we say homology of a simplicial complex, there is no ambiguity to
what we refer to. We can mean either the simplicial homology of the simplicial complex or
the homology of its realization. Pursuing this, we will write B« (S) instead of B«([S]) and
similarly for the torsion coefficients T¢(S) = (T«.,i(S))ie[sc(s), When we speak about the
homology of a simplicial complex.
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Computation of homology groups

How fast can one compute the homology of a simplicial complex is not a settled ques-
tion, as it depends deeply on the structure of the simplicial complex. Further, one can see
that the computation of just the Betti numbers is equivalent to the computation of the rank
of sparse matrices [169]. As the latter is still an open problem, we don’t pretend to give the
best working algorithm, but one that is good enough for our purposes.

The result in which many computations of homology rely is the following one which re-
lates the Betti numbers and torsion coefficients to linear algebraic invariants of the boundary
operators. Recall that the Smith Normal Form (SNF) of an integer matrix A € Z™™ is the
unique diagonal matrix

Drank A-s(A)
SNF; (A)
SNF(A) := e z™m (3.23)
SNFs(a)(A)
0

where the SNF;(A) are positive integers and SNF;(A) divides SNF; 1 (A) forall i < s(A) <
rank A and such that
A = g SNF(A) h

for some g € GLy,(Z) := {g € Z™™ | det(g) € {-1,+1}} and h € GLy(2Z).

Theorem 3533, Let S be a simplicial complex and {6? e >0 fts family of boundary operators
with respect to some order o of its vertices. Then:

(B) Forevery k,

Bk(S) = #Sk —rank J —rank ;.

(T) Forevery k and every i, s¢(S) = s(92

k+1) and

Thi(S) = SNF;(98, ).

Proof. By Theorem 3532, and equations (3.20), (3.21) and (3.22), we have that

A
ker dk

Bk ([S]) = rankz —

im o

On the one hand, note that ker 0kA is a submodule of the free module Cf(S) and so also
free by [273; Ch. lll. Theorem 7.1]. Since extending to the rationals preserves the rank of a
free module [273; Ch. XIV. Proposition 4.1], we can see that

rankz ker dkA = dimg ker dkA = #S8, —rank dkA.

On the other hand, choose a Z-basis of ker dkA and another Z-basis of CfH(S) such
that a,fﬂ : CfH(S) — ker 0f is in SNF with respect to these bases. Then, by direct

computation, we have that

s(02 )

A k41
ker ak ~ Zrankz ker oF —rank dkAH Zz
; A - i A .
im o, = SNF; (0. ,)Z
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Combining the above two paragraphs, we get the desired result by [273; Ch. /Il Theo-
rem 7.3 and 7.7]. m|

By the above theorem, computing the homology of a simplicial complex is reduced
to computing the Smith normal form of its boundary operators and computing the Betti
numbers to computing the rank of its boundary operators. We have then the following two
algorithmic schemes for computing the Betti numbers and homology of simplicial complexes.

Algorithm 1: SIMPLICIALBETTI
Input :feN
simplicial complex S

ro < 0
fori — 1to ¢+ 1do
A
L re < rank o;
by — #Sk_1 —re—1—rx
Output by, ..., by

Output : £ first Betti numbers Bo(S), ..., Be(S) of S

Algorithm 2: SIMPLICIALHOMOLOGY
Input :feN
simplicial complex S

ro <0
to < 0
fori — 1tof+1do
Compute SNF(O8)
re < rank o2
Sk — s(akA)
te < (SNF1(08),...,SNFs, (08))
| bk — #Sk1— 1 — e
Output by, ..., bpand t1,..., te

Output : £ first Betti numbers Bo(S), . .., Be(S)
and ¢ first torsion coefficients T1(S), ..., T¢(S) of S

The complexity of algorithms SIMPLICIALBETTI and SIMPLICIALHOMOLOGY depends on
how much time one needs to compute, respectively, the rank and the SNF, where we ob-
serve that we don’t need the matrices that put the boundary operator in SNF. The following
deterministic bound shows that one can bound the computation in terms of the size of the
simplicial complex.

Proposition 3534, [142; Proposition 4.6] Algorithms SIMPLICIALBETTI and SIMPLICIALHO-

MOLOGY take O(Y. 511 (# Sk)°)-time.
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Proof. We will use the algorithm of Storjohann [383] for computing the SNF. Since boundary
operators have entries of bit-size at most 1, the algorithm takes O~ (m*®~'m’M(m’)) on a
matrix A € Z™™ where O~ indicates that polylog-factors are omitted, w is the exponent of
matrix multiplication and M(t) the complexity of multiplying two integers of bit-size at most
t. We know that w < 2.8, by Strassen’s algorithm [384], and M(t) < t2, by the standard

multiplication algorithm. We eliminate the polylog-factors by bounding then by O (m°m’-1).
O

Remark 3534. We note that the above deterministic complexity bound is far from being
optimal. The above complexity bound can be improved. Using the algorithms from Gies-
brecht [191], we can turn the exponent from a 5 to less than a 4 for homology, and from 5
to less than a 3 for the Betti numbers. 19

Remark 3535, We note that persistent homology gives an alternative way to perform the
computation of homology in the cases of interests. The main idea is to update the simplicial
complex by successively adding faces to the complex and update the computed topological
invariants. In many contexts and for many purposes, this is more efficient than the algorithm
described above.

The above applies specially in our setting, since our simplicial complexes will have a
natural order of the faces given by their ocurrence as we vary the parameter of the Cech or
Mayer-Vietoris complex. However, we don’t pursue this path as it does not entail a theoret-
ical advantage in the complexity. However, in any future implementation of the algorithms
described here, one should take into account these computations of the homology, as they
are more efficient in practice. 19

353-2 Cech complex and the functorial Nerve theorem

The Cech complex is the nerve of a collection of closed balls of the same size. Because
of this, it captures the homology of a cloud of points.

Definition 3535, [167; //1.2]. Let X C R™ be a finite set of points and € > 0. The Cech
complex of X of radius ¢ is the simplicial complex

Ce(X) = N({E(X, e)| xe X}) ={0 C X | NxesB(x, ) # @}. (3.24)

Theorem 3535, [et X C R™ be a finite set of points and € > 0. Then U (X, €) is homotopy
equivalent to [Ce(X)].

Proof. The only issue to apply the nerve theorem (Theorem 3531) directly is that its statement
applies to open covers. We now show that this is not an issue for the case at hand.

Note that there is a sufficiently small & > 0 such thatforall t € [0,8), Cey¢(X) = Ce(X).
This identity allows us to interpret Ce¢(X) as the nerve of {B(x,e + t) | x € X} for all
t € (0,8). By making & smaller if necessary, we can guarantee that for all ¢ € [0, 8),
U(X,e) — U{B(x,e +t) | x € X} is a homotopy equivalence, by Durfee’s theorem
(Theorem 2531). Hence we can apply the nerve theorem (Theorem 3%31) and finish the
proof. O
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A drawback of the above theorem is that it does not allow us to deal with unions of
Cech complexes. In order to do this, we need a version that is functorial, i.e., that involves
an explicit map. This is what we do below, giving two proofs. One using the nerve theorem
and one using the homological inclusion-exclusion transfer, which will play a fundamental
role later.

Functorial nerve theorem
Let X € R™ be a finite set. We want a map

AX S R™

mapping [CS(X)] into U(X, €) and inducing an isomorphism in homology. An obvious

candidate is
En: AN 5 R™

Z ty[x] — Z tx X (3.25)

xeX xeX
which is the unique affine map sending each vertex [x] to the corresponding point x. We
note that the rule of this map is independent of the finite set X, which is why we omit the
subscript.
The next theorem shows that ¢n is the map we are looking for.

Theorem 3536 (Homological functorial nerve theorem). [91; Theorem 5.2]. The restric-
tion &m: [Ce(X)] — U(X, ) of the affine map Em induces an isomorphism in homology:

& He ([Co(X)]) = Ho(U(X, €)).
The following lemma is needed to show that ¢n maps [Ce (X)] to U(X, €).

Lemma 3537. [91; Lemma 5.1]. Let X C R™ be a finite set of points and € > 0. If
MNyex B(x,€) # @, then conv(X) C U(X, ¢).

Proof of Lemma 357. Without loss of generality, by Carathéodory’s Theorem [424; Propo-
sition 1.15], we can assume that conv(X) is a simplex. Suppose (,cx B(x, €) # @. For a
nonempty o C X, take p’ € N, B(x, €), and let p, be the closest point to p’ in conv(o).
Then ps € (Nyeo B(X, €). To see this, just note that when moving from p” to ps, the distance
to each x € o decreases.

We now consider the barycentric subdivision of conv(X) with respect to the family
of points {ps | o C X}, which is a barycentric subdivision where we take ps instead
of taking the centroid in the relative interior of each face o C X. It is sufficient to show
that conv(A) € U (X, €) for every maximal simplex of this subdivision. Every such simplex
A has the form conv(px, 1, Pixi.xs}s - - -» PX), Where x; € X, so we have pix, . x,} €

2 B(xi,e) C B(xy,¢) for each of its vertices pyx,.. x,}. Therefore, A C B(x;,&) C
U (X, €) by convexity. m|

First proof of Theorem 35%6. Let o € C¢(X). Then ﬂxe B(x, € ) # @ and so, by Lemma
3537 applied to o, conv(c) € U(o,e) € U(X,¢). As [Cs(X)] = U (x )A" and

oeCe (X
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conv(c) = & (A°), it follows that &nt ([Cs (X)]) € U(X, €). Thus & is a continuous map
[(VDe (X)] — U(X, g). It only remains to prove that it induces an isomorphism in homology.

Let {dx}xex be a partition of unity in U (X, €) subordinate to {B(x, €)}xex. That is,
the ¢ are continuous maps ¢, : U(X,e) — [0, 1] such that ¢, is zero outside B(x, €)
and ) yex $x = 1. (For example, we could take ¢ := in’; o with px(p) := max{e—||p—
x|, 0}.) We define the continuous map

@ UKX,e) > [Ce(X)]
pr > bu(p)lX]

xeX
and will show that ¢t o ¢ is homotopic to the identity idg(x ¢). To do so, consider the linear
homotopy
t t(Cro @)+ (1 —t)idyxe

between ¢rt o ¢ and idg(x,e). To show that this linear homotopy restricts to a homotopy
of functions U(X,e) — U(X,€), we only have to check that for every p € U(x, €), the
segment [En(¢p(p)), p] is contained in U(x, €).

In order to check this, put Xy := {x € X | dx(p) # 0} and note that

sn(@(p) = Y dx(p)x € conv(Xy).

xeXy

We have p € Nyex, B(X, &) since x(p) # 0 implies d(x,p) < &. By Lemma 3537 we
have conv(Xy) € U(Xo,€). So en(p(p)) € U(X,e). Hence there exists x € Xj such
that &mt(q(p)) € B(X,¢€). Since also p € B(x,€), we have [p,&n(¢(p))] C B(X,&) C
U(Xp,e) CUX,&).

So we have shown that &nt o ¢ is homotopic to the identity. Therefore,

&, : He ([Ce(X)]) = He (U(X, €))

is an epimorphism for every €. Now, by Theorem 3525, H, ([Ce (X)) and He(U (X, €)) are
isomorphic finitely generated abelian groups. We conclude that ¢mt induces an isomorphism
in homology, because a surjective homomorphism between isomorphic finitely generated
abelian groups is an isomorphism [336; Exercises 4.2(10)]. m|

Homological inclusion-exclusion transfer

The “inclusion-exclusion” in the title above refers to the idea of inferring information on
the homology of a space X (or a map between spaces) from the homology of intersections
of subspaces, in a manner akin to the combinatorial inclusion-exclusion principle.

Let X be a topological space and C,(X) be its singular chain complex. For A,B € X we
denote by Co (A + B) the subcomplex of C4(A U B) generated by the singular simplices that
either lie inside A or inside B. We will say that a finite family {X;};¢ of subsets of X satisfies
the Mayer-Vietoris hypothesis when, for every non-empty J C | and k € |\ J, the inclusion
of chain complexes

Co[Xe + )X | = Ca|xe U],
jeJ jeJ
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induces an isomorphism in homology. We will say that it satisfies the inductive Mayer-Vietoris
hypothesis when, for all finite families {Fs}e¢el Of subsets of I, the family of intersections
{Nher, Xn}eeL satisfies the Mayer-Vietoris hypothesis.

The reason to introduce this last notion is that it gives a common name to the three
main situations that we will encounter and in which this condition holds:

1) The family {X;};¢ is a family of open subsets of | ;¢ X;. The inductive Mayer-Vietoris
hypothesis holds due to [216; Proposition 2.21].

2) The family {X;}¢ is a family of closed subcomplexes of a CW-complex. The inductive
Mayer-Vietoris hypothesis holds due to [346; Cor. 8.44].

3) The family {X;};¢ is a family of closed semialgebraic sets in RN. The inductive Mayer-
Vietoris hypothesis holds due to the Semialgebraic Triangulation Theorem [70; Theo-
rem 9.2.1] combined with situation 2) above.

In all these three situations, the inductive Mayer-Vietoris hypothesis will allow us to use
the Mayer-Vietoris exact sequence in inductive arguments, such as the one for the following
theorem.

Theorem 3538 (Homological inclusion-exclusion transfer). [91; Theorem 5.4]. Let X
and Y be topological spaces and {X;}ic, {Yi}iel be finite families of subsets of X and' Y,
respectively, satisfying the inductive Mayer-Vietoris hypothesis. We assume that X = | ;¢ Xi
andY = ;¢ Yi. Moreover, let f : X — Y be a continuous map such that f (X;) € Y, for all
i € 1. Let k be an integer such that for all nonempty J C | with |J| < k, the morphism

He(F): He (NjesX;) — He (NjesY;)
is an isomorphism for € < k and an epimorphism for £ = k. Then
He(F): He(X) — He(Y)
is an isomorphism for € < k and an epimorphism for € = k.

The following is an immediate consequence of Theorem 3538.

Corollary 3539. [91; Corollary 5.5]. Under the assumptions of Theorem 3538 if, for all
nonempty J C |, f: NjeyX; — NjegY;induces anisomorphism in homology, then f: X —'Y
induces an isomorphism in homology. O

Proof of Theorem 3538. The proof is by induction on the size of |, for arbitrary k. The asser-
tion is trivial when [ is a singleton.

LetI =1"U{ip} with iy ¢ I". By assumption, we have f (U;erX;) € UjerYi, £(X;,) €Y
and f (U,-ep (Xi, N X,-)) C Ujer(Yi, NY;). By induction hypothesis, the maps

o

By : He(Xiy) = He(Yi,) and B3 : He (UjerXi) — He (UierY)
induced by f are isomorphisms for £ < k and epimorphisms for € = k, and the maps

oz 2 He (Uier(Xip N Xi)) € He (Vier (Yi, NY5))
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He (Uier (Xi, N Xi)) — % H, (Uier (Yi, NY}))

~ ~

B
He(Xi,) @ He (UrerXs) ———— He(Yi,) ® He (UierY:)

He (Xi, U (UjerXi)) ——— He (Yi, U (UjerY)))

Ye

~ ~

He-1 (Uier (Xi, N X)) —X 5 Hyy (Uier (Yi, NYi))

~ Bo ~
Heo1(Xi,) @ Heo1 (UierXi) —— He_1(Yi,) ® Heot (UjerY)

Figure 3536: Natural map of Mayer-Vietoris sequences in the proof of Theorem 3538.

are isomorphisms for £ < k — 1 and epimorphisms for £ = k — 1. Here we view Nj¢j(X;, N
X;) = Xj, N (NjeyX;) as an intersection of |J| 4 1 subsets, for J C I" with |J| < k — 1. (Note
that the inductive Mayer-Vietoris hypothesis is necessary to apply the induction step, as it
guarantees that the families {X;, N X;};cy and {Y;, NY;}; ¢y satisfy the induction hypothesis;
this is not necessarily the case with the Mayer-Vietoris hypothesis.)

The map of pairs f : (UjerXj, Xi,) = (UierYi, Yi,), and the fact that these pairs sat-
isfy the Mayer-Vietoris hypothesis, induce the commutative diagram of Mayer-Vietoris se-
quences shown in Figure 3536, where o, B, and v, are the maps in homology induced by
f.

In this figure, the induction hypothesis ensures that a, is an isomorphism for € < k —1,
an epimorphism for € = k —1, and that B, is an isomorphism for £ < k and an epimorphism
for € = k. This gives us two cases to consider: £ < kK —1and ¢ = k.

If £ < k —1, then ay_q, Be—1 and B, are isomorphisms and a, is an epimorphism.
Therefore, by the Five Lemma [347; Proposition 2.72(iii)]], Y¢ is an isomorphism.

Otherwise, if £ = k, then B, and a,—1 are epimorphisms, and Be—; is an isomorphism.
Therefore, by the Four Lemma [347; Proposition 2.72(i)], ye is an epimorphism.

The statement now follows by induction. m|

Remark 35%6. Theorem 3538 can be considered a homological version of the Vietoris-Begle
Theorem [379; p. 344] for homology in terms of coverings. For example, one can see that for
a locally trivial fibration mt: E — B with (k — 1)-connected fiber F, the homological inclusion-
exclusion transfer implies the homological Vietoris-Begle Theorem since, for every trivializing
open subset U € B, H¢(F X U) — H(U) is an isomorphism for € < k and an epimorphism
for £ = k. |

We give now an alternative proof of the functorial nerve theorem (Theorem 3536) that
does not use the nerve theorem (Theorem 3535) but the homological inclusion-exclusion
transfer we have just proven.

Second proof of Theorem 3536. By Lemma 3537, arguing as in the previous proof, the map
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&n: [Ce(X)] = U(X, &) is a well-defined continuous map. Now, using the first part of the
proof of Lemma 3537, we constructamap q : Ce(X) \ {@} — [C¢(X)] such that for each
oeC, (X)

q(0) € A° and &n(q(o)) € [ | B(x. &).

X€eo

Now, let
M :={(o,...,0)) | €= 1;foralli, #c; =i, 6; C 6;4; and o; € C¢(X)}
be the set of maximal flags of Cq (X). We have then that
7 :={conv(q(o1),...,q(oy)) | (o1,...,0/) € M}

and

B::{UE(X,S) | (0‘1,...,0'/)6/\/(}

X€0oy

are closed covers of, respectively, [(VD8 (X )] and U (X, €). Note that for 7" this is so because
it is the set of maximal faces of the barycentric subdivision with respect to the family of points
given by {g(c) | o € Cc(X)}.

Furthermore, one can see that for every (o1,...,0/) € M,

¢n(conv(g(oy),...,q(or))) € B(xy,€) C U B(x, €)

X €0y

where o, = {x;}. Hence, by the homological inclusion-exclusion transfer (Corollary 3539), it
is enough to check that on the intersections ¢t induces an isomorphism in homology, since
both 7 and $B satisfy the inductive Mayer-Vietoris hypothesis (as they can be as covers
formed by closed semialgebraic sets).

Now, every intersection of elements of 7 is a convex set and so contractible; and every
intersection of elements of B is a union of closed balls with non-empty intersection and so
contractible (by taking the continuous retraction onto any common point). Thus ¢ induces
trivially an isomorphism in homology for every intersection and we are done. m|

Remark 3537. Let us note that the proof above is complete and accessible to every first
year algebraic topology student who has covered the basics of homology theory. Standard
references in topological data analysis (such as [167]) don’t usually prove the nerve theorem
at all. In this way, the above proof can be a nice addition to introductory courses in topological
data analysis. 9

353-3 Vietoris-Rips graph and complex

Building the Cech complex requires to check if the intersection of many Euclidean balls
is non-empty. From the viewpoint of complexity, this is not a restriction to us, since it can
be done in singly exponential time using any algorithm for deciding () (such as the one
in [34; Ch. 14]). However, one may feel uncomfortable to use such a result in our numerical
approach, because, on the one hand, it feels contrary to the grid method’s philosophy to rely
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on an step of high computational cost and, on the other hand, it would make any potential
implementation tedious.

Because of the above, we introduce a variation of the Cech complex where we only
have to check the pairwise distance of the points in our point clouds. We provide at the end,
an approximation theorem that guarantees us that we still get the same homology. We note
that functoriality will not be lost, as the new simplicial complex will contain the Cech complex
with the isomorphism in homology induced just by inclusion.

Vietoris-Rips complexes and graphs

The main idea of the Vietoris-Rips complex is to get a simpler complex than the Cech
complex at the potential cost of losing some topological information, because of the added
faces.

Definition 3536. Let X € R be a finite set and € > 0, the Vietoris-Rips complex of X of
radius €, VR (X), is the simplicial complex given by

VRe(X) :={c € X |foral {x,x} C o, dist(x, X) < 2¢}. (3.26)

One can easily see that C¢ (X) € VR (X), since the condition for the Cech complex
requires that the intersection of all the balls to be non-empty while the one of the Vietoris-
Rips complex only requires all pairwise intersections to be non-empty. In the other direction,
one has the following proposition.

Proposition 35310 (Jung’s Theorem). [146; Theorem 2.5]. Let X € R™ be a finite set

and g > 0. Define
2m

8 = € [1, \/5) . (3.27)

m-+1
Then Ce(X) € VR (X) € Ces,, (X). o

Remark 3538. We note that the constant 8,, is optimal with respect to the inclusion
‘VRS(X) C ésme(f\’)- To see this, we only have to consider the vertices of the standard
simplex. 19

Before continuing, we should observe that all information of the Vietoris-Rips complex
is encoded in its graph. This motivates the definition of the Vietoris-Rips graph.

Definition 3537. Let X C R be a finite set and € > 0, the Vietoris-Rips graph of X of
radius &, G *(X), is the graph with vertex set X whose edge set is given by

E(GYR(X)) := {xy | dist(x, X) < 2¢}. (3.28)

Then the following proposition is straightforward. Recall that a clique of a graph is a
subset of vertices such that the induced graph is complete, i.e., there is an edge between
every two vertices.

Proposition 3511, Let X C R™ beafinitesetande > 0. Thenforallo C X, o € VR (X)
iff o is a clique of G R (X). O

One can formalize the above by saying that the Vietoris-Rips complex is the clique
complex of the Vietoris-Rips graph. The importance of the Vietoris-Rips graph is that it can
be manipulated at a lower cost than the Cech complex and doing so gives improvements
both in practice and in theory [425].
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Attali-Lieutier-Salinas approximation theorem

In principle, one might consider that the Mayer-Vietoris complex will lose always topolog-
ical information. However, just by strengthtening a little the conditions of the Niyogi-Smale-
Weinberger approximation theorem, one can still guarantee that no topological information
is lost as shown by Attali, Lieutier and Salinas [14, 15].

Theorem 35312 (Attali-Lieutier-Salinas approximation theorem). Let X C R™ be a
compact set such that T©(X) > 0 and X € R™ a finite set. Then for all € > 0 such that

1
7disty(X,X) < &g < 5T(X), (3.29)

X is a deformation retract of U(X, €) and the inclusion t : C¢(X) < VRe(X) is an ho-
motopy equivalence. In particular, X and VR (X) have isomorphic homology groups (via
o (6m,)7 Y.

Proof. Lett := 1(X)and d := disty(X, X). Then combining [15; Lemma 5], [15; Theorem 7]
and [15; Lemma 12], with p = 1, we see that the inclusion Ce (X) < VR, (X) induces an
homotopy equivalence whenever 8,,e + & < t and

t—\t2— (8pe+8)2 < (2—8,)e—26

for some t < t(X) and & > d. Taking & to d and ¢ to T, the condition simply becomes
3n,e+d < tand

T2 - (Ope+d)2 < (2-8y)e—2d.

Divide now everything by d and rename x := €/d and a = 1/d, sothatwe get 3, x +1 < «
and

o« — o2 — (8,x +1)2 < (2-8,)x — 2. (3.30)

We will show that this condition holds whenever
o
T< X< —
5

from where the above claim follows, because in this case it also holds 3 < x < a/2
which is the condition (3. 10) of the Niyogi-Smale-Weinberger approximation theorem (The-
orem 3518). The last claim is just applying Theorem 3536.

Consider the left hand side asamap f : (8,x + 1,0) — R, of a. Then

x —f(a)
Vo — (3mx +1)2 \/0(2 mx +1)2

<0

Flla) =1-

and so f decreases with a. This means that for o« > 5x, we have

o — Va2 — (83X 4+ 1)2 < 5x — /25x2 — (3% + 1)2,

and so, for a > 5x, (3.30) is implied by

5X — V25x2 — (8mx +1)2 < (2= 8)x — 2
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which, as 8,, € [1, V2], is implied by

5x — \/25x2 —(V2x+1)2 < (2-V2)x - 2.
Eliminating squares, this expression becomes
6(V2—2)x2+6(2+V2)x +5<0
which holds for x > 7. The proof is concluded. O

Remark 3529, The above result cannot be found in any of the papers using the grid method to
compute homology groups [142, 88, 91, 92]. This will allow this thesis to have a considerable
improvement over the results there, since our algorithms would only require evaluation of
distances to construct the simplicial complexes with the same homology. 19

Further comments

Most of the exposition in this chapter regarding the Niyogi-Smale-Weinberger approxi-
mation theorem (Theorem 351 8) and the lower bounds of the reach follows the lines of [88].
However, we have given full proofs of all the statements, since there is no single reference
were all details were together. The last section follows mainly the guidelines from [91], from
where many statements and proofs (concretely those of the functorial nerve theorem (The-
orem 3536 and the inclusion-exclusion transfer (Theorem 3538 and Corollary 3539)) were
taken with minor modifications.

The major addition of this chapter is the inclusion of the Vietoris-Rips complex and the
Attali-Lieutier-Salinas approximation theorem (Theorem 35312) which could lead to an effi-
cient implementation of the algorithms exposed in this thesis and avoid the use of expensive
subroutines to construct the simplicial complexes our algorithms rely on.
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Numerical algorithms
for the homology of semialgebraic sets

After the Three Years of Great Famine (=4F K1J13%), consequence of the failures of the
Great Leap Forward (K ki) of Mao Zedong (& 4), the Chinese Communist Party had
to undertake a serious reform of Chinese agriculture and economy to avoid an even greater
disaster [Q5]. Liu Shaoqi (x]/>#) and Deng Xiaoping (X[5/\F) took this challenge and led a
sequence of necessary reforms inside China [Q5].

While they were justifying their reform, Deng Xiaoping would pronounce his famous
citation of the Sichuan proverb “Yellow cat, black cat; as long as it catches the old rat,
good cat” (¥ . A, HEHEEE R Z L) during his speech “Restore Agricultural
Production” (JE#EK I &\ A= 77) on the 7th of July of 1962 [Q3] (cf. [Q4]). Showcasing
his future heterodox approach to economy, although not to politics, he would claim in this
speech that “[o]ur sole aim is to win by taking advantage of given conditions” and that “we
should not stick to a fixed mode of relations of productions but adopt whatever mode that
can help mobilize the masses’ initiative” [Q3].

Leaving aside Chinese history and politics and coming back to the rhetoric of this thesis,
we will just made these words ours in the context of computational semialgebraic geometry
and say:

PSR, B, RO AR B I B R s

And paraphrasing Deng Xiaoping, we say that our sole aim is to solve the problem taking

The introduction of this chapter is unorthodox, but, after several chapters, it is important to recover the
focus. For this, we are using this historical metaphor built around the famous Sichuan proverb of the cat. In this
way, we hope that the underlying philosophy of this thesis is transmitted better by these catchy phrases. The
reader who does not like this rhetorical style should not worry, because the mathematical exposition will be in
the same rigorous metaphor-free style as it has been.

1Symbolic algorithm, numerical algorithm; as long as it can solve the unsolved problem, good algorithm.
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advantage of given conditions and that we should not stick to a fixed mode of computation
but adopt whatever mode that can help mobilize the answers.

This philosophy means that we should not limit ourselves to the symbolic mode, but
embrace any mode that allows us to progress, such as the numerical one. In this chapter,
we show the numerical algorithms that improve the current state-of-the-art in the path to-
wards (B) and (B). This chapter is the climax of this thesis. Chapters 1, 2 and 3 were just
leading us here.

First, we show the recipe for constructing simplicial approximations ; second, we show
how the condition numbers k and K, can be estimated fast; third, we show a numerical
algorithm solving (B) and (B) that runs in singly exponential time with high probability; and
fourth and last, we prove that this algorithm is stable, i.e., that it can run in finite precision
and produce correct results.

451 Simplicial approximation of semialgebraic sets

We begin by showing the basic recipe by which one can obtain a simplicial approxi-
mation of a well-posed semialgebraic set. In the next section, we will turn this recipe into
effective algorithms. The basic ingredient of our recipe will be spherical r-nets G € S”, from
which the simplicial approximations are constructed.

Definition 45'1. Let r > 0. A spherical r-net is afinite set G € S” such that for all x € S”,
dists(x,G) < r.

Remark 4511, We note that a spherical r-net is an r-net of S”, but the opposite is not true
since the Euclidean distance does not coincide with the geodesic distance on the sphere.
However, every r-net of S” is a spherical %—net. 19

We divide our recipe in three steps. First, we show how a spherical r-net allows one
to produce clouds of points approximating the desired closed semialgebraic sets in the
Hausdorff distance; second, we show how to construct a homologically equivalent simplicial
complex out of a family of clouds that approximates the atoms and whose intersections
approximate the corresponding intersections of atoms; and third and last, we show how
to approximate a general semialgebraic set by a closed one using the Gabrielov-Vorobjov
approximation. Of course, all this will require the fundamental assumption k(f) < co.

451-1 Sampling of spherical semialgebraic sets

The following is the fundamental construction to approximate semialgebraic sets. The
idea is to take those points in the spherical r-net G that are near the semialgebraic set that
we want to approximate, where ‘near’ means that they satisfy approximately the defining
formula of the semialgebraic set.

Definition 45'2. [91; (6.6)]. Let G C S" be a spherical r-net, f € Hy[q], t € (-T,T)¢ and
® a lax formula over (f, t). The approximating cloud of G-points for (f, t) is the set

X(f, t,8,G) = Spip2, (F, £,8) N G, (4.1)

where Spi/2,(f, t, @) is the algebraic neighborhood of S(f, t, @) defined in (2. 6).
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In the special case that ® is an atomic formula of the form (f; o t;||fi[lw), we write
X,?cj(f, t, G) for the corresponding cloud of points.

The following theorem justifies the term ‘approximating’ as it gives the conditions under
which the approximating cloud is near the corresponding semialgebraic set with respect to
the Hausdorff distance.

Theorem 4511 (Sampling theorem). [91; Theorem 6.5] and [92; Theorem 4.7]. Let f €
Halql, t € (=T, T) and T, r > 0 be such that V2DR(f)(r + T) < 1 and LLi(¢) > 2Dz r.
Then for every spherical r-net G C S" and lax formula ® over (f, t),

disty (X(f,t,®,G),S(f, t,®)) < V2DV?k(f)r.

Proof. By Proposition 252, we can assume, without loss of generality, that @ is in disjunctive
normal form. Furthermore, we can assume that @ is purely conjunctive, since

distn(U_,Ai, Ui_ B;) < max disty(A;, B))
1

for any compact sets Ay, ..., A, By, ...,B; € R,
By the construction of X (f, t, ®, G) and Proposition 25*3,

X(f, t,8,G) C Sp2,(f,t, @)
C Us (S(F. . #), VID'*K(F)r) € U (S(F, £, %), VIDV?R(F)r).

By assumption on G, for all x € S(f, @), there is some gx € G such that dists(x, gx) < r.
Thus gx € Us(S(f,t,®),r) < Spie,(f,t,®), by Propositon 253, and so
gx € X(f,t,®,G). Hence

S(f, t,®) C Us(X(F,t,8,G), r)
CUX(F,t,8,G),r) C U (X(f, t®,6), @Dl/zz(f)r) ,

as D > 1 and k(f) > 1. The inequality on the Hausdorff distance follows from the two

inclusions above by Proposition 3511. m|

45 -2 Simplicial approximation of closed S(f, t, ®)

The sampling method above allows us to obtain approximations of semialgebraic sets
as near as we want with respect to the Hausdorff distance. One interesting property of the
method of sampling that we are using is the following identity:

X(F,t,8,G) = ® (X,j.(f, £.G).XZ(F.6.G).X5(F.1.6) | i € [ql. ) € [e]) . (4.2)

Further, note that X,-,:j(f» t,G) = Xij.(f, t,G)N Xii.(f, t,G). This means that once we are
able to approximate the atomic semialgebraic sets of the form S(f, ¢, f; > t;[|fi|lw) and
S(f, t, f; < tjl||f|lw), we can approximate all the possible lax semialgebraic sets that can be
constructed from (f, t).

This motivates the assumption on the following theorem, which gives us a way of ap-
proximating the homology of a semialgebraic set via a simplicial complex with the same
homology.
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Theorem 452 (Cech homology witness theorem). [91; Theorem 2.4] and [92; Theo-
rem 4.6]. Let f € Hg[q] and T > 0 be such that 2k(f)T < 1,and € > 0. Let t € (-T,T)®.
Moreover, for i € [q] and j € [e], let X ,j,Xl.i,Xij C S" be closed subsets such that for all
i/, Xi’:j = Xii N ij and for all purely conjunctive formula ¢ over (f, t), we have

3 disti (¢ (X'J’X X_ lielqlse [e])’s(f’ ; ¢)) sEs min{48D3/12E(f) 121(3%)}'

Then, for all lax formulas ® over (f, t), the set S(f, t, ®) and the simplicial complex

@ (Ce(X7), Ce(X3), Ce(X3) 1 € [q), j € [e])
have the same homology.

Theorem 45! 3 (Vietoris-Rips homology witness theorem). Let f € Hy[g] and T > 0
be such that 2x(f)T < 1, and € > 0. Let t € (—T,T)®. Moreover, for i € [q] and j € [e],
let Xij, X ,Zj ij C S” be closed subsets such that for all i, j, Xij = Xii N Xii. and for all
purely conjunctive formula ¢ over (f, t), we have

rdisty (¢ (X, X3, X5 i € [ql. j € [e]),S(F. t.9)) < & < min{lQOD;ﬂE(f) 30é;}.

Then, for all lax formulas ® over (f, t), the set S(f, t, ®) and the simplicial complex
@ (VR (X7). VRe(X2). VR:(X3) | € [q]. J € [e])
have the same homology

Proof of Theorem 452, Let
€ = @ (Ce(X7)), CelXZ). Ce(X3) 1 € [q), j € [e])
Let p > 0 be such that
1) V2k(F)(p+T) < 1, 2) LL(t) > 2p, and 3) 6D%e < p.

Note that such p > 0 can only exist if

6D%s < min {\/ié(f) -T, U_|,2(t)} .

The assumption on g implies that

1 . 1 L)
6D2e < mm{8DE(f)’T}'
Now we note that
1w LLL(¢)
mm{SDE(f)’T} <m|n{\/§E(f> =T, 5 },

since

$0-VE 1
8V2D K(f)
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which in turn is guaranteed by the assumption 2k(f)T < 1 and D > 1. This guarantees the
existence of the positive number p satisfying the desired inequalities.

We can assume, without loss of generality, that ® is of the form

c1>z\/c|>éi

Ee=

where ¢ is a purely conjunctive lax formula over (f, t) in normal form, since, by Proposi-
tion 2512 and its proof, this does not change any of the sets involved.

We will use the Inclusion-Exclusion Transfer (Corollary 3539) to show that both S(f, ¢, @)
and € have the same homology as the algebraic neighborhood S, (f, t, ®) for the p chosen
above. By properties 1) and 2) of p, we can use the quantitative Durfee’s theorem (Theo-
rem 2532) to deduce that, for all | C Z, the inclusion

()S(F. t.be) = S(F. t. Agache) € Sp(7. £, Agerbe) = [ |SplF. 2, by)
Eel Eel

induces an isomorphism in homology. In addition, we have

LJs(F.t.d0) =S(F. t.@) and | JS,(f. £, de) = Spl(f, t, ®),

Ee= EeE

so we can apply the Inclusion-Exclusion Transfer to the families {S(f, ¢, ¢§)}§€E and
{Sp(f, t, d¢)}ee= to deduce that the inclusion

S(f,t,®) < S,(f, t,) (4.3)

induces an isomorphism in homology.

It is enough to show that € and S, (f, ¢, @) have the same homology. To do so, let us
denote

XY= WX, X2 X5 i € [ql. j € [e]) (4.4

where y is a purely conjunctive formula over (f, t).

We first prove that for all z in the Euclidean neighborhood U (XY, €), we have that for
any purely conjunctive formula y over (f, t),

V4

dists (H,S(f, t, \p)) < Ge. (4 .5)

Indeed, for all yo, y; € S”,

dists(yo, y1) < —dist(yo, y1) < 2dist(yo, y1).

o
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Consequently,

dists ( ,S(f, t,\p)) < 2dist

V4
TR S(f’ t, W))
llzl

< 2dist ﬁ z) +2d(z, X¥) + 2disty(XY, S(F, t, )

< 2dist ”Z—”,z) +2d(z, XY) + 2¢
V4

= 2dist(z,S") + 2d(z, X¥) + 2¢
< 4dist(z, X¥) + 2¢

< 6¢,

where the second line follows from the triangular inequality for the Hausdorff distance, the
third one from disty (XY, S(f, t, y)) < €/3, the fourth one from the fact that = ” T is the nearest
point to z in S”, the fifth one from X¥ C S” and the sixth and last one from z € U(XVY, ).
Hence we have shown (4. 5). As the set U(XY, €) is not included in the sphere S”, it will
be convenient to consider, for any set S C S” the cone

S:={Ax|A>0, xS}

over the spherical set S. Note that the inclusion

S—S (4.6)
is a homotopy equivalence since the map

0,1]xS > S
X

X = 0 T el

induces a continuous retraction of S onto S. These two spaces thus have the same homol-
ogy. We will write U and S to denote the cones over the corresponding neighborhoods. As
a consequence of (4 . 5) we deduce that for any purely conjunctive formula y over (f, t),

—~

U(XY,€) C Us(S(F, t,y),68) C So(F, t, ),
the last by Proposition 2513 and property 3) of p. We therefore have the inclusions

S(F, t,y) —> UXY,¢)

\ i (4.7)

Se(f, t,¥)

the horizontal arrow by hypothesis and the diagonal by composition.

We now note that S(f, t,y) — U(XVY, e) induces an isomorphism of homology by
the Niyogi-Smale-Weinberger approximation theorem (Theorem 3518) and Theorem 3526
and that so does S(f, t, y) — §p(f, t,y), now by Theorem 2532, properties 1) and 2) of p
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and (4. 6). This implies that the inclusion U (XY, g) — §p(f, t,y), vertical arrow in (4.7),
induces an isomorphism in homology. Thus, the map

Cm : [CVDE(X"’)] — UXY,¢)
defined in (3.25) composed with the vertical arrow in (4. 7) yields a map
en: [Ce(XY)] = So(f. ty)

that induces an isomorphism in homology, by the homological functorial Nerve’s theorem
(Theorem 3536). Summing up, we have shown that for every purely conjunctive formula ,
the map

n: [Ce(XY)] = Sp(f. t,w)

is well-defined and induces an isomorphism in homology.
We come back to the general case. Since

€= JCc(x¥) and 5, ft(I):U (f, t, be),
Ee= €=

the map
&m: [€] = S,(f, t, ®),

defined by the formula in (3.25), is well-defined, as we can guarantee that the image is
contained in the codomain by the previous paragraph. This map induces an isomorphism
in homology, by the Inclusion-Exclusion Transfer (Corollary 3539) applied to the families
{Ce(X®) }eez and {S,(f, t, dr)}re=. This is so because, as we have just seen, the map
¢n induces an isomorphism in homology for purely conjunctive formulas, together with the
equalities

() Ce(X¥) = Ce(X™=%) and () S,(F, t, be) = Sp(F, t, Agesdhr)
EeJ Eed

forallJ C Z. Using (4 . 6) again we conclude that € and S, (£, £, ®) have the same homology.
We can conclude as we have shown that both S(f, ¢, ) and € have the same homology
as Sy(f, t, @) for the chosen p. O

Proof of Theorem 453, Since the assumptions of Theorem 45 3 are stronger than the ones
of Theorem 4512, we can apply the latter theorem. As in the proof of this latter theorem, we
can assume, without loss of generality, that @ is of the form

o= \/¢a

where ¢ is a purely conjunctive lax formula over (£, t) in normal form, by Proposition 2512
and its proof. Recall also the notation XV of the proof, given in (4. 4), that we will use here.
For each purely conjuntive lax formula y over (f, t), we have the inclusion

Ce(XY) € VR (XY)
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where XV¥ is as in the proof of Theorem 4512. We have that € > 0 satisfies the hypothesis
of Attali-Lieutier-Salinas approximation theorem (Theorem 35312) for the set S(f, t, y) by
Theorem 3526 and our assumption. Therefore the above inclusion is an isomorphism in
homology.

We can now apply the Inclusion-Exclusion Transfer (Corollary 3539) to the families
{Ce(X®)}eez and { VR (XP) }eez since

ﬂ Ce (Xd’é) =G, (X/\F,eJd)E) and ﬂq}ﬂe((\’@,) — VR, (X/\geJd)g)
el kel

for all J C =. This finishes the proof. |

Remark 452. In the above two proofs, we have use that both the Cech and Vietoris-Rips
complexes behave nicely with respect to intersections. Let us note that in general

Ce(Xo) U Ce(Xo) S Ce(Xo U Xy) and VR (Xp) U VRe(Xo) € VR (Xo U Xy)

are strict inequalities. 19

Remark 45'3. Note that we cannot apply directly neither the Niyogi-Smale-Weinberger ap-
proximation theorem (Theorem 3518) nor the Attali-Lieutier-Salinas approximation theorem
(Theorem 3%312) since, by Example 3521, we have that not all closed semialgebraic sets
have positive reach, even when they are well-posed. 1

The following proposition combines the homology witness theorems with the sampling
theorem. We can now put together the homology withess theorems and the sampling the-
orem.

Proposition 454, [et f € Hy[q], t € (=T, T)%, € > 0,and r > 0 be such thaTZD%E(f)(rJr
T) < 1land

(4.8)

V2DV (F)r < € < min{ ! u(t)} .

120D3/2k(f)’ 30D3
Then, for every spherical r-net G C S" and for all lax formulas ® over (f, t), the spherical
semialgebraic set S(f, t,®) C S", the simplicial complex

@ (ée(X,-j-(f, t,G)),Ce(X7(F. 1,6)).Ce(X5(F. t.G)) i € [ql, j € [q]), (4.9)

and the simplicial complex

@ (VR(X(F.£.6)). VRe(XE(F,£.G)). VR XS (F.£.6)) | 7 € [ql, j € [q]),
(4.10)
have the same homology.

Proof. This is a straighforward combination of the sampling theorem (Theorem 45'1), the
Cech homology witness theorem (Theorem 45*2) and the Vietoris-Rips homology witness
theorem (Theorem 4513). We only use the first theorem to bound the Hausdorff distance
appearing in the latter two theorems. m|
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45 -3 Simplicial approximation of arbitrary S(f, ®)

We now adapt the proposition above to the case of an arbitrary semialgebraic set
S(f, ®). We note that this semialgebraic set might not be closed anymore, this is why we
will use the Grabielov-Vorobjov approximation theorem (Theorem 2541) to pass from the
arbitrary case to the closed case. We should observe that when we apply the latter the-
orem, the obtained Gabrielov-Vorobjov approximations are not any more described by lax
formulas over f, but by lax formulas over (f, t). This is the main reason why the previous the-
ory was developed for this extended family of polynomials, instead of just for homogenous
polynomials.

Let f € Hylg] and &,€ > 0. To a monotone formula ®, we associate the lax formula
®'Bse over (f, (-8, —¢, €, 8)) given by

((fi < ellfillw) v (fi 2 —ellfillw), (i = 8llfillw) V (fi < =8l fillw),
(fi = 8llfillw), (i = 8llfillw) V (fi < ellfillw) V (fi = —¢llfillw),
(fi < =8llfillw), (i < =8llfillw) Vv (fi < ellfillw) V (fi = —¢llfillw) | 7 € [q]), (4.11)
obtained by the substituting the indicated formulas in the places of the corresponding atoms.
Looking at Definition 2541, we note that this is the formula describing a Gabrielov-Vorobjov

block, i.e.,
rBa’s(f’ ¢> = S (f’ (_87 _87 8, 6), @I—BS'E) .

Now, let 8, € € (0, 00)™. To a monotone formula @, we associate the lax formula ®'Bs= over
(f,(=8m,—€ms...,—01,—€1,€1,01,...,€m, Om)) given by

m
\/ o' Bore; (4.12)
i=1

As above, looking at Definition 2541, we note that this is the formula describing a Gabriglov-
Vorobjov approximation. More explicitly,

MBse(f,®) =S (f, (=Bims =€y + s =81, —€1, 1,815 - -+ Ems Sm)s @rsﬁ,s)

In this context, we introduce the following vectors of numbers depending on a parameter
6> 0:

x(©):=0(-2(n+2),-2(n+2)+1,...,-1,0,1,...,2(n+2)-1,2(n+2)) (4.13)
9(0):=6(1,3,...,2n+1,2n + 3) (4.14)
00):=0(2,4,...,2(n+1),2(n + 2)). (4.15)

The following proposition gives a condition on 0 for being able to construct a homologically
equivalent simplicial approximation of S(f, ®) using the Gabrielov-Vorobjov approximation
MBre)se)(f, D).

Proposition 45'5. Let f € Hy[q], 8 > 0, € > 0, and r > 0 be such that

1

——— and TV2DY*k(f
ETEE V2DV (F)r < € <

py (4.16)
2
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Then, for every spherical r-net G C S" and for all monotone formulas ® over f, the spherical
semialgebraic set S(f, ®) C S”, the simplicial complex

2B0=0) (8, (X5 (F,%(0), 6)) Ixe {=, 2, <}, i€ (g, j € [tn+9]),  (4.17)
and the simplicial complex
P Ba@).0) ((VRE(ij(f,x(e),g)) |ce {=,>,<},7€[q],j € [4n+ 9]), (4.18)
have the same homology.

Remark 45'4. We note that this proposition is just Proposition 4514 with the inequalities
adapted for this setting. 19

Proof. This proposition follows from Proposition 45 4. We only have to check the conditions
there. Note that in this case, LLI(x(8)) = 8 and that we can take T to be (2n+-5)8. Combining
the two inequalities in (4 . 16), we obtain that

1
240(n + 2)Dk(f)

V2D ?R(F)r < € <

This implies that 2D%E(f)r < 1/240, and so
9DIR(F)(r +T) < 1,

since 2D2K(F)T = 2D2K(F)(2n + 5)0 < 3/4, by (4.16). This shows the first needed in-
equality. Now,

, 1 0 0
min 5 , I = I
120DzK(f) 30Dz | 30Dz

due to (4.16). Therefore (4 . 16) follows and Proposition 454 applies. O

45% Algorithms and their complexity

In the previous section, one can glimpse how our algorithms will be. We now provide
specific descriptions of our algorithms together with condition-based and probabilistic com-
plexity analyses. We note that all algorithms here work only with high probability. This is the
so-called weak complexity framework which was introduced by Amelunxen and Lotz [6].

First, we give efficient constructions of spherical r-nets; second we give an algorithm
to estimate the condition number; and third and last, we give our algorithm to compute the
homology of a semialgebraic set.

45%2-1 Constructing spherical nets

Unfortunately, the construction in the proof of Lemma 15220 is hard to be made efficient.
Here we present three constructive spherical nets: the uniform grid, the random grid and the
recursive grid. The first one is based on projecting the uniform grid from the cube onto the
sphere, the second one on sampling points uniformly on the sphere, and the third one on
pasting smaller copies of a initial spherical 1/3-net to obtain iterative refinements.
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Remark 45%1. To avoid being repetitious we will employ the uniform i1-grid in the presentation
of the algorithms. However, one can easily exchange this grid by the recursive in-grid Rz and
obtain a similar bound. Additionally, one can employ the random n-grid Oy (s), but, since
this is a grid has the desired properties only with high probability, we omit giving the exact
complexity as it would require an unnecessarily lengthier exposition taking into account this
particularity. 1

Uniform grid

The uniform grid is as old as the grid method. We introduced anothe variant of this grid,
different from the one used in [143, 144, 139, 142] and the one used in [88, 91, 92]. This
variant is constructed so that it is completely adapted to floating-point arithmetic.

Definition 4521, Let 1 € N. The uniform r-grid, Gy, is the finite set

Gy = Ttsn ({x e ol-7=[3legn] Zzn+1 | forsome i € {0,...,n}, xj € {—1,+1}}) cs’
(4.19)
obtained by taking all points whose coordinates are integer multiples of 9-1-=[3logn]- i
the boundary of the cube [~1, 1) and projecting them onto the sphere with the nearest
point retraction msn : x > x /|| x||.

It is clear that the uniform n-grid can be efficiently implemented in a computer. The main
trick is to use the identity
f(x) = f(msn(x))llx]|?

that holds for a homogeneous polynomial of degree d. This allows us to take full advantage
from the fact that x can be written exactly in floating-point arithmetic.
The following proposition shows that this grid has the expected properties.

Proposition 4521. Let i1 € N. Then the uniform it-grid Gy is a spherical 2~"-net and satisfies

that
4Gy < 2%n|ogn+2n+log n+2+ni O(2nlog n+n|71).

Proof. Note that the map ms» : x — x/|| x|| restricts to a bijective map
10: 9[-1,1]" —» 87 (4.20)

which is 1-Lipschitz on each one of the facets of d[—1, 1]""! with respect to, respectively,
the Euclidean and geodesic distances.

Let x € S” be an arbitrary point. Then @_1(x) lies in some facet F of d[—1,1]"*! and
there is y € 217#[310971Zn+1 1 F such that dist(x, y) < Va2 % [2%097] < 9% By the
Lipschitz property, we have then that

dists(x,t0(y)) < dist(f0 " (x), y) < 27"

Thus dists(x, G») < 27" and Gy is a spherical 27"-net.
For the second claim, we note that

$Gn = 2(n + 1) (2m+|'§|ogn'| N 1)n.

The claim follows after some trivial estimates. O
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Let us note that the uniform grid grows faster than the grid in Lemma 15220. While the
latter’s growth is exponential in n, the uniform grid’s growth is exponential in nlog n. This
difference shows the loss that one has when covering the sphere by covering efficiently the
boundary of a cube.

We will come back to an adaptive version of the uniform grid in Chapter 5 when dis-
cussing Han’s covering algorithm.

Random grids

We begin with a random spherical net on the sphere which can be constructed in a very
fast way by uniformly sampling points in the sphere. This is a very simple case of the random
sampling procedure of Niyogi, Smale and Weinberger [300].

Theorem 4522, [300; Proposition 3.2] Letn > 2, r € (0,1), 9 > 1and m € N be such that

r r

(7 (o o
m>2|- nin—+Ingaj. (4.21)

Then the random set

@m = {}:1, cee xm}
where x4, . .., ¥y are i.i.d. random vectors uniformly distributed on the sphere S" is a spher-
ical r-net with probability > 1 —1/4.

Proof. Let N := N, be the spherical r/2-net of Lemma 15220. We will show that with
probability > 1 — 1/q, for each x € N, there is i such that dists(x, x;) < r/2. Since N is
a spherical r /2-net, the triangle inequality implies that ®, is a spherical r-net finishing the
proof.

Because of the above, we have that

P(®, is not a spherical r-net) < P(3Ix € N | Vi, dists(x, %) > r/2) (Implication bound)
< #N P(Vi, dists(eg, ) > r/2) (Union bound)
= #N P(dists(eg, x;) > r/2)" (i.i.d.)
= #N (1 — P(dists(eq, ¥;) < r/2))"

Now, we observe that

3

2

vol, Bs(x,r/2) 1 (r)n o 1 (r)n
2351\7)

P(dists(eg, %) < r/2) = ————= > —

(dlists (e, %) /2 vol, S” 3

where the first inequality follows from the argument in the proof of Lemma 15220. By the

same lemma, we also have the same bound for #N. Let a™! = 2 (%)”. We only have to
show that

1(1 _ o()é(ln ot +n 7) <1/
(o4

But 1 — a < e™® and so the above inequality holds. O

Remark 45%2. The proof is just an adaptation of the proof of [300; Lemma 5.7]. We note
that this method is a kind of probabilistic pigeonhole principle: if n(In n + Ing) pigeons go
at random to n pigeonholes, then none of the pigeonholes is empty with probability at least
1 — 1/9. Note that the number of pigeons is quasi-linear in the number of pigeonholes.
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Corollary 4523, [etn > 2, 1€ N, a > 1and m € N be such that
mm(ﬂ) _ |’2n(|7|+2)+log n(l7l+2)+1 (1 + In 9‘)-| ) (4 . 22)

Then the random set
On(9) == {x1, - -, Xmu(a) }

where the x; are i.i.d. random vectors uniformly distributed on the sphere S" is a spherical
27"-net with probability > 1 — 1/s. o

We will call the random set Oy () in S” the random Ww-grid with failure probability 7.

This random construction is very efficient and we can see that its size grows exponentially
in n, but not exponentially in nlog n as the uniform n-grid. An additional nice property is that
we can increase the probability of success exponentially, by just doubling the number of
sampled points.

Recursive grids

Assume that we start with a spherical 1/3-net R;: we will use this original grid to con-
struct finer and finer grids as needed. Such a initial grid can be constructed using the follow-
ing proposition, which we only need to apply once for each dimension.

Proposition 4524. Let n > 2. Then
{xi 7€ [16"]}

where the x; are i.i.d. random vectors uniformly distributed on the sphere S” is a spherical
1/3-net with probability at least 0.999.

Proof. This is a particular case of Theorem 4522, O

Remark 4523. We insist on the fact that we only need to apply the probabilistic construction
above once. Once we have the initial spherical 1/3-net of S”, there is no need of recomputing
it. Because of this and for the sake of simplicity, we will ignore this probabilistic step in
our complexity analysis. However, we leave as an open problem to construct this grid in
deterministic singly exponential time.

Open problem F. [s there a deterministic algorithm running in 29(")_time that outputs a
spherical 1/3-net of S"?

We note that the uniform grid has quasi-exponential complexity 20(nlog n) 's0 either one
solves the problem or relaxes it to a probabilistic regime as we have done above. 19

We take this initial spherical net R; and we project it onto the ball E(O, 1) € R" via the
projection

X0
X1
X1
X=|.1|—]:
Xn
Xn

This procedure gives an 1/3-net R of B(0, 1). To avoid having too many points, we substitute
R by a maximal subset N/ satisfying the property that for all x, y € N, dist(x, y) > 23/156.
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We note that that N can be constructed efficiently from R, by enumerating the points of R
and eliminating points that are too near to the previously listed points. We note that N would
be then a 25/52-net of B(0, 1), since 1/3 + 23/156 = 25/52.

The following proposition shows the fundamental step in our construction, we only need
to assume for it that NV is a 25/52-net.

Proposition 4525. Let r € (0,1/3] and consider the map tO : R" — S" defined in (1 .29).
Then tO ((tan r)N) is a r /2-net of Bs(eq, r) with respect to the geodesic distance of S.

Proof. Themap O : §(0, tan1/3) — Eg(eo, 1/3) is 1-Lipschitz with respect to, respectively,
the Euclidean and geodesic distances. Now, (tan r)N is a =5+ 25ta”’ -net of B(0, tan r), and so,
by the previous statement, O ((tan r)N) is a 2280 -net of Bg(eg, r) = B(0,tan r). Since

26
tanr < —r,
25

for r € (0,1/3], and 2 - 2 = 1/2,the claim follows. O

Now, we put a copy of KO ((tan r)N) at each point of this net. For x € S”, define

, if x = e
hy = . (4.23)

I — 2%, otherwise,

so that hy is an orthogonal transformation mapping x to ey and e to x.

Definition 4522. Let R, be a spherical 1/3-net of S” and N a 25/52-net of B(0,1) C R".
The recursive -grid Ry with seeds R; and N is the finite set given recursively by

Ra:=| | {hxro ((tan 22—“/3)/\/) | x € RM} (4.24)
forn > 2.

In other words, to obtain Rj; from Rj—1, we cover each geodesic ball §§(X, 21‘“) with
x € Ry-1 with geodesic balls Eg(y, 27"y with y coming from a projection of (tan2™")N
around x. Note that there is a certain fractal appeal to this net, since, at each iteration, we
are just adding smaller and smaller “copies” of the same net around each point. The following
proposition shows the properties of the recursive grid.

Proposition 4526. Let 1 € N. Then any recursive n-grid Ry is a spherical 21— /3-net and
satisfies that
#Ry < #R (HN)'L,

In particular, if R, was constructed using Proposition 4524 and N by projecting R, then
#R; < 160707,

Proof. The proof works by induction. The statements are obvious for R;. Assume that the
statement is true for i1. Let x € S”, then there is z € R;; such that dists(x, z) < 217™/3.
Therefore, by Proposition 4525, there is z” € h,tO(tan(22~ "D /3)N) C Ry4q such that
dists(x, z") < 27%/3. Thus Rj.1 is a spherical 27" /3-net. By the induction principle, we are
done.

The bound on the size is obvious from the construction. |
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Remark 45%24. We note that for n large, concretely, n > 16, the recursive in-grid R; has a
smaller size than the uniform n-grid. However, the uniform grid grows at a smaller rate in
terms of 1 than the recursive grid. This situation can change if one finds a different construc-
tion of N. |

452 -2 Estimation of the intersection condition number

Our first algorithm estimates of the intersection condition number k. The main idea is
to use the 2nd Lipschitz property (Proposition 1533) which allows us to see the condition
number as the inverse of a Lipschitz function on the sphere.

Remark 4525, All the algorithms in this section will be given working with k. However, ev-
erything here can be easily translated in terms of k and of K. 19

The following lemma and its proof is very similar to the proof of Theorem 15219,

Lemma 45%7. [91; Corollary 6.2]. Let f € Hy[q], r > 0and G be a spherical r-net. Define
Kg(f) :=max{k(f,x) | x € G}.
Then kg(f) < K(f). Moreover, if Dkg(f)r < 1, then

w(F) < —e)

1 —-Dkg(f)r
Proof. The first claimed inequality is trivial. To prove the second we apply the 2nd Lipschitz
property of X (Proposition 1533). Let x, € S” be such that kX(f) = k(f, x.). Since G is a
spherical r-net, there exists x € Gy such that dists(x, x.) < ru. Therefore, using the 2nd
Lipschitz property, it follows that

1
o) SR T SR R

The desired inequality follows. m|

Based on Lemma 4527, we propose algorithm k-ESTIMATE whose correctness is pro-
vided by the lemma itself.

Theorem 4528, [91; Proposition 6.3]. Algorithm X-ESTIMATE is correct. Its run-time on input
(f, p, B) is bounded by

0 (227970 (min(B,K(F)}p™")") = (gnDmin{B,®(F)}p~) "

Proof. The correctness follows from Lemma 4527 and the stopping criterion, noting that at
each iteration we have K = kg, (f) < k(f).
To prove the cost bound assume that, after 1 iterations, we have

n > log, (2D# p ), (4.25)

where % := min{B, K}. Then 27" < &£~ If B > K then .# = K and the algorithm halts. If
B < K, then the algorithm halts as well. Thus we have shown that the algorithms halts after
at most

log, (Dmin{B,X(f)}p™")
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iterations.
At any intermediate 1th iteration, the number of points in Gy is bounded by

0 (279 < 0 (277 (Dmin(B,R(F)}p™)"). (4.26)

by Proposition 4521. For each point x € Gy we compute the value of K(fL, x) for

min{q,n+1} g n+1 1
< n+1 il -1 n+1 4.27
kZ::l (k) <q ; o = (e-1)q (4.27)

many subsets L. Each of these computations can be done in O (N + n3) operations by [272;
Lemma 25]. We note that the latter result is for computing approximation k(f, x) up to a
constant factor, which would only alter slightly the algorithm and its complexity. For con-
venience, we ignore this as it only would make things unnecessarily technical. Finally, note
that

NSq(nJgD)Sql—[(1+%) < q(2D)", (4.28)
k=1

from where it follows that each k(f\, x) is computed with cost O(q(2D)"+n?) < O(q(2D)").
Putting all the previous bounds together we obtain the desired complexity bound. O

Remark 4526. Algorithm K-ESTIMATE estimates k(f) up to a precision p in finite time, pro-
vided this condition number is not too large (not much bigger than B). When B = oo is
given as input, it estimates k() up to this precision but its running time is not bounded. In
particular, if K(f) = oo, then the algorithm loops forever. )|

Algorithm 3: k-ESTIMATE

Input : f € Hylq|
pe(0,1)
B € (0, 9]
me—>o
repeat
ne—n+1

K — (1= p) ™ max{k(f", x) | x € G, L € [q]*"*}
until DK2™ < p(1 + p) or B < K

if B < K then
| return fail

else
L return K

Output :fail or K € (0, 00)
Postcondition: If fail, then B < K < k(f);
otherwise X(f) < K < (1 — p)~'k(f)
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Corollary 45%9. [91; Proposition 2.2]. Algorithm K-ESTIMATE on input (f,0.01, o0) returns
a number K such that

K(f) < K < 1.02k(f)
ifK(f) < oo, or loops forever otherwise. The run-time is bounded by (qnDk(f ))O(n).

45%2-3 Computing the homology of semialgebraic sets

We describe now the algorithm that computes the homology of semialgebraic sets.
First, we present the algorithm for spherical semialgebraic sets; second, we show how it
is adapted to the affine setting; and third and last, we provide the probabilistic complexity
analysis, explaining the philosophy of the weak complexity.

Remark 45%7. We note that the algorithms here can be modified to produce the algorithm
for counting zeros of [139, 140, 141], and for computing the homology of real projective
smooth sets [142], basic semialgebraic sets [88] and closed semialgebraic sets [91]. For
the sake of brevity, we only give the algorithms for computing the homology of spherical
and affine semialgebraic sets, but the interested reader can reconstruct the remaining algo-
rithms easily combining the Sampling Theorem (Theorem 45'1) and the homology witness
theorems (Theorems 4512 and 453. 1

Spherical semialgebraic sets

Proposition 4515 is the basis of Algorithm SPHERICALHOMOLOGY. However, let us note
that Proposition 4515 is a combination of the Gabrielov-Vorobjov approximation theorem
(Theorem 2542), the Sampling Theorem (Theorem 45'1), and the homology witness the-
orems (Theorems 452 and 453). Since we can construct spherical nets, this transforms
Proposition 455 into Algorithm SPHERICALHOMOLOGY. We note that the choice of the pa-
rameters € and 0 is arbitrary, but the particular values are not important as long as they
satisfy the needed inequalities.

We also give Algorithm SPHERICALLAXHOMOLOGY that computes the homology of semi-
algebraic sets given by lax formulas, as it is of interest of its own and it has better constants.
We will not discuss it further, as the same estimates that apply to Algorithm SPHERICALHO-
MOLOGY apply to Algorithm SPHERICALLAXHOMOLOGY.

The main theorem concerning algorithm SPHERICALHOMOLOGY is the following one.

Theorem 45210. [91, 92; Theorem 1.1(j)]. Algorithm SPHERICALHOMOLOGY is correct. ts
run-time on input (f, ®) is bounded by

0 (q size(®) (131nDE(f))10"<”+2>) — g size(®)(nDK(f))0").

Remark 45%8. Using Remark 3534, we can improve the complexity of the algorithm at the
cost of allowing an error probability. If we do so, 10n(n + 1) in the exponent becomes
8n(n—+1). Moreover, if we are only interested in the Betti numbers, it can be further reduced
to6n(n+1). |
Remark 4529. An alternative formulation of Algorithm k-ESTIMATE runs with an arbitrary upper
bound K of k(f). However, for this version, run-time depends on K instead than on k(f),
unless one imposes that K is a sufficiently good approximation of k(f). |
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Algorithm 4: SPHERICALHOMOLOGY
Input : f € Hylq]
Boolean formula ® over f
Precondition : k(f) < oo

eliminate negations in ®
K «— k-ESTIMATE(f, 0.01, c0)
6 «— 1/(9(n + 2)DK)

Xg «— 0

fori=1,...,n+ 2 parallely do
9 «— (2i—1)6
o, « 2i0

MKoj—1 €= Jj, XKgj < [;
HKo(i+n+2)-1 €= =9, Ko(i4n42) < —Hi
i « [log 2700(n + 2)D*K?]
g1/ (277(n + z)D%K)
fori=1,...,gandj =0,...,4(n+2) do
X/i —{xegulfilx) = (x; — D327)][f;lw}
3/3, — (VRS(XI.,ZJ.) with faces up to dimension n + 1
X5 —{xeGnlfi(x) < 0k + D227 lw}
Sfj — fVRe(ij) with faces up to dimension n + 1
Sl:_j — S/,Zj N Si,sj

S 0 (S5,82.55 | € (gl j € 0.....4(n +2)})

(Bos---sPBn; T1s---, Tp) < SIMPLICIALHOMOLOGY(n, S)
return By,...,Bn T1,..., Th
Output : Betti numbers By, . . ., B, of S(f, @)

and torsion coefficients Ty, ..., T, of S(f, @)

Proof. The correctness of the algorithm is guaranteed by Corollary 4529 and Proposition 4515,
We perform the complexity analysis now. The most expensive parts are: 1) call to Algo-
rithm k-ESTIMATE, 2) Construction of the lej., 3) construction of the simplicial complexes
S;"J 4) Construction of S, and 5) call to Algorithm SimpLICIALHOMOLOGY. We go one by
one.

1) The bound in Corollary 4529 applies here.

2) Each construction requires the evaluation of points coming from G; and the corre-
sponding comparison. Evaluating f;, .. ., fy at a point x € S" takes O(N) arithmetic oper-
ations. This means that we perform

O(N #gm) <0 (N2n log n+m7|) <0 (q22n log n+13nD3nK2n)



452 Condition and Homology in Semialgebraic Geometry 149

Algorithm 5: SPHERICALLAXHOMOLOGY
Input : f € Hylq]
lax formula ® over f
Precondition : k(f) < oo

K « k-ESTIMATE(f, 0.01, c0)

i « [log 1300D%K?]

g1/ (125D%K)

fori=1,...,gdo

XZ —{xeGilfi(x)> —D227| i |w}

S7 (VRE(XI.ZJ.) with faces up to dimension n + 1

X5 {x € Ga | fi(x) < D227 fllw}

S,.S — (Vﬂe(z\’fj) with faces up to dimension n + 1
= > <

Si — Si,j N Si,j

S (s7,87,87 i€ q)
(Bos---sPBn; T1s--., Tp) < SIMPLICIALHOMOLOGY(n, S)
return By,...,Bn, T1,..., Th

Output : Betti numbers B, . . ., Bn of S(f, @)
and torsion coefficients T4, ..., T, of S(f, @)

arithmetic operations, where the latter bound follows from Proposition 4521, the choice of i1
and (4. 28). These computations are then followed by

2q(n + 2) #gm < o) (qn2nlogn+nﬁ) < 0 (q2nlogn+lognD2nK2n)

comparisons, where the inequalities follow from Proposition 4521 and the choice of 11 again.
3) In order to construct the faces of VR (X) up to dimension €+-1 for a cloud of points
X C S”, we construct the graph G;VR (X) and then we find the cliques of size at most € + 1

of this graph. The first step requires
#X
o)
2

operations and comparisons to be able to compute and compare with 2e the distances
between any two points of X. The second step requires to explore all possible subsets of
size at most k, this means checking

€42

> (#/f) < (e - 1)(#X)ET?

i=1
subsets of X, where the inequality is analogous to that in (4. 27). Applying this to our setting
gives us
O (gn(#Gx)""?) <0 (q (128nDK)2”(”+2))
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operations in our algorithm. The bound is obtained again using Proposition 4521 and the
choice of n.

4) We construct S from the S7; using formula ®"Bas, This formula has size (n+1) size(®).
We only have to apply this Boolean formula to each possible face of S checking if it is there
or not. This adds the extra factor n size(®) to the complexity.

5) By Proposition 3534, Algorithm SIMPLICIALHOMOLOGY has run-time bounded by

n+1
o) (Z(#S,-f)

i=0
where S; is the set of /-dimensional faces of S;. Arguing as in 3), we can bound this by

o ((128nDK)10”(”+2>) .
Combining all this estimates with K < 1.01k(f) finishes the proof. O

We will now further discuss on some properties of the algorithm above, so that it can
be appreciated better. We will discuss two topics: the computation of the first € homology
groups, and the computation of the Betti numbers.

Computation of the first £ homology groups It may be the case that we are not
interested in computing all the homology groups, but only the first €. This can easily be
attained by only constructing the simplicial complexes in Algorithm SPHERICALHOMOLOGY
up to the faces of dimension € + 1 and applying Algorithm SimpLICIALHOMOLOGY with the
needed input change. This will improve the complexity of the algorithm.

Theorem 45211. One can modify Algorithm SPHERICALHOMOLOGY to compute only the first
€ homology groups. The run-time of this modified version on input (f, ®, €) is bounded by

0 (q size(®) (128nDE(f))10"<”2>) = g size(®)(nDK(f))°"?).

Proof. The complexity analysis is just as that of the proof of Theorem 45%210. The only dif-
ference is in point 3) where we only have to construct the face of dimension at most € + 1
which transform the (n + 2) in the exponent into (€ + 2). O

Computation of the Betti numbers If we substitute Algorithm SimpLICIALHOMOLOGY
by Algorithm SIMPLICIALBETTI, we can focus on just computing the Betti numbers. Unfortu-
nately, the rank of an integer matrix cannot be deterministically computed significantly faster
than the Smith Normal Form. The main issue is that the size of the integers can grow during
the computation, which the fast Monte Carlo algorithms [165, 191, 161] avoid by reducing
modulo some prime. However, this growth does not happen if we are interested in the mod
p Betti numbers for some prime p.

The kth mod p Betti number of X is the integer given by

B (X) := dimg, He(X) ® Fp = Bi(X) + #{i € [sk(X)] | p divides Tx;(X)}  (4.29)

where |, = Z/pZ is the prime field of size p. Note that we can obtain this number by
constructing the chain complex with formal combinations over [, instead that over Z. These
can be computed faster.
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Theorem 45212, One can modify Algorithm SPHERICALHOMOLOGY to compute only the first
¢ mod p Betti numbers. The run-time of this modified version on input (f, ®, €, p) is bounded
by

0 (qlog(p) size(®@) (128nDR(F))" ) = qlog(p) size(®)(nDR(F))*"®).

Proof. One can show an analogue of Theorem 3533 in which [SZ(X) is obtained from the [Fp-
ranks of the boundary operators in the same way that B (X) is obtained from the Q-ranks.
This reduces the problem to a rank computation over a finite field. We can use then Gaussian
elimination. |

Remark 45210. The probabilistic algorithms for computing rank (by Dumas and Villard [162]
and Cheung, Kwok and Lau [119]) can be used to turn the exponent 6n(£€+2) into 2wn(€+
2), where w is the matrix multiplication exponent. 1

Affine semialgebraic sets
The algorithm for affine semialgebraic sets is nothing more than a homogeneization, as
described in Section 154, followed by the Algorithm SPHERICALHOMOLOGY.

Algorithm 6: AFFINEHOMOLOGY
Input 1 p € P4lq]
Boolean formula ¥ over p
Precondition : k,¢(p) < oo

f — H(p)
P — o

(Bos--->Bn; T1,..., Tp) < SPHERICALHOMOLOGY(f, ®)
return By, ...,Bn T1,..., Th

Output : Betti numbers By, . .., B, of W(p, ¥)

and torsion coefficients T1, ..., T, of W(p, ¥)

To this algorithm, the same statements as those to Algorithm SPHERICALHOMOLOGY
apply. In particular, we have the following theorem.

Theorem 45213, [91, 92; Theorem 1.1(j)]. Algorithm AFFINEHOMOLOGY is correct. Its run-
time on input (f, ®) is bounded by

O (g size(®) (128nDys(p)"*""*?)) = g size(@)(nDRas(p)) "
Proof. By definition, K. (f) = K(H(f)). We apply Theorem 45210. O

The same comments that applied to Algorithm SPHERICALHOMOLOGY apply also to Al-
gorithm AFFINEHOMOLOGY.
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Weak exponential complexity of the algorithms

The main motivation for the weak complexity framework of Amelunxen and Lotz [6] is
that there are algorithms that are efficient in practice, but whose expected time is infinite.
This gap is explained by the existence of algorithms that have good complexity with high
probability, but whose expected complexity is infinite. An example of such an algorithm is
the power iteration method for computing a leading eigenvector of a Hermitian matrix [6].

This phenomenon is a reverse of the St. Petersburg paradox of Bernoulli [50]. In this
paradox, a player is guessing the output of a coin. The player wins double what E bet, if Eir
guess is correct, and loses Eir bet, otherwise. Although the expected gain of the game is
infinite, the actual probability of winning an exponentially large quantity of money decreases
exponentially. This means that in practice is hard to actually get an extremely large amount
of money playing the game. Even more, it is very likely that one loses all one’s money playing
the game.

In probabilistic complexity, the bet is exactly the other way around. We want the run-
time to be small for a random input. The expected run-time can be large, even infinity, but this
can be the consequence of a set of inputs that happens with exponentially small probability.
These inputs are really rare, which is why they are called black swans. In practice, black
swans are extremely rare, and because of this, it is very likely that the run-time is small.
We will call this phenomenon the Leningrad paradox, since it is dual to the St. Petersburg
paradox.

The following two theorems show that both Algorithm SPHERICALHOMOLOGY and Algo-
rithm AFFINEHOMOLOGY run in weak singly exponential time.

Theorem 45214, [eta > 1.

(A) Let § € Hy[q] be a random KSS polynomial tuple and ® a Boolean formula over f.
Then the run-time of Algorithm SPHERICALHOMOLOGY on input (f, ®) is at most

Size(q))(qD)O(n3)g10n(n+1)
with probability at least 1 — 1/4.

(S) Leto > 0, f € Hylq], fo € Halq] be a random polynomial tuple uniformly distributed
in Bw(f, o) and ® a Boolean formula over §. Then the run-time of Algorithm SPHERI-
CALHOMOLOGY on input (f, ®) is at most

Size(q))(qD)O(n3) (g)lon(n+1)
with probability at least 1 — 1/4.

The constants inside the O-symbols are universal.

Theorem 45215, Lets > 1.

(A) Let p € Pqlq] be a random KSS polynomial tuple and ® a Boolean formula over .
Then the run-time of Algorithm AFFINEHOMOLOGY on input (p, ®) is at most

Size(Q))(qD)O(n3)g10n(n+1)

with probability at least 1 — 1 /4.
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(S) Leto > 0, p € P4[q], ps € Palq] be a random polynomial tuple uniformly distributed
in Bw(p, o) and ® a Boolean formula over p. Then the run-time of Algorithm AFFINE-
HoMoLOGY on input (p, ®) is at most

. 10n(n+1)
size(®)(gD)°"") (5)
(o)

with probability at least 1 — 1/4.

The constants inside the O-symbols are universal.

Proof of Theorem 45%214. This is a combination of the probability tail bound of Proposi-
tion 1535 and the run-time bound of Theorem 45210. O

Proof of Theorem 45215, This is a combination of the tail bound of Corollary 1546 and the
run-time bound of Theorem 45213, |

By choosing a concrete probability measure, we get the following estimate that justifies
the claim that Algorithms SPHERICALHOMOLOGY and AFFINEHOMOLOGY run in weak singly
exponential time. We note here that we are using this notion in a different way than the
creators (see Remark 45211 below). The advantage of the following corollaries is that it puts
a probability that goes to zero with (2gD)”, which can be seen as the “symbolic size” of the
input.

Corollary 45216. [91, 92; Theorem 1.1(ii)].

(A) Let i € Hgy|q| be a random KSS polynomial tuple and ® a Boolean formula over f.
Then the run-time of Algorithm SPHERICALHOMOLOGY on input (f, ®) is at most

size(®)(qD)°"")
with probability at least 1 — (2gD)~".

(S) Let o > 0, f € Hy|q], To € Halq] be a random polynomial tuple uniformly distributed
in Bw(f, o) and ® a Boolean formula over §. Then the run-time of Algorithm SPHERI-
CALHOMOLOGY on input (f, ®) is at most

Size(qD)(qD)O(ng)O'_lO"("Jrl)
with probability at least 1 — (2qD)™".

In other words, Algorithm SPHERICALHOMOLOGY runs in weak singly exponential time with
respect to n and in weak singly polynomial time with respect q and D. |

Corollary 45217. [91, 92; Theorem 1.1(ii)].

(A) Let p € Pqlq] be a random KSS polynomial tuple and ® a Boolean formula over ».
Then the run-time of Algorithm AFFINEHOMOLOGY on input (p, ®) is at most

size(®)(qD)°"")

with probability at least 1 — (2gD)™".
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(S) Leto > 0, p € P4[q], ps € Palq] be a random polynomial tuple uniformly distributed
in Bw(p, o) and ® a Boolean formula over §. Then the run-time of Algorithm AFFINE-
HoMoLOGY on input (p, ®) is at most

size(@)(qD)O(n?’)c—mn(nH)
with probability at least 1 — (2qD)™".

In other words, Algorithm AFFINEHOMOLOGY runs in weak singly exponential time with respect
to n and in weak polynomial time with respect g and D. m|

Remark 45%11. We note that the interpretation that we do here of the weak complexity of
Amelunxen and Lotz [6] is a more liberal interpretation of [6; Definition 1.7]. In our inter-
pretation, we are saying that an algorithm has weak f (k)-time (with respect the input size-
controlling parameter k) when it takes f(k)-time with probability at least 1 — 1/ (ko(l)),
where O(1) may not be constant with respect other parameters. We note that this does not
always means weak in the sense of Amelunxen and Lotz, although it has the same underlying
philosophy. 1

453 Parallelization and numerical stability

We discuss two advantages of our algorithms for computing homology: parallelization
and stability. The former allows us to cut down the running time of the algorithm by distribut-
ing the algorithm’s work among many processors. This is a typical advantage of the grid
method. The latter allows us to run our algorithms in finite precision floating-point, which turns
all the above condition-based and probabilistic complexity estimates into bit-complexity es-
timates. This is a common property of good numerical algorithms.

Since Algorithm AFFINEHOMOLOGY is just a call to Algorithm SPHERICALHOMOLOGY after
homogenization, we only have to analyze this for the latter algorithm.

4531 Parallelization

First, we recall the notion of a parallel algorithm; second, we show that k-ESTIMATE
can be done in parallel weak polynomial time; third, we show that this is the case also for
the construction of the simplicial complex of SPHERICALHOMOLOGY; and fourth and last, we
discuss which topological invariants can be computed in parallel polynomial time.

Remark 4531. We will give the probabilistic bounds only in the average setting and not in
the smoothed setting, since the latter can be obtained from the former by multiplying by an
appropiate power of . Moreover, we will give only this bound in its simplest form. 19

What is a parallel algorithm?

Leaving formalities aside, a parallel algorithm is an algorithm in which several compu-
tational processes can run simultaneously. There are issues regarding the communication
between processors executing the parallel computational process, but we will assume that
there is no issue in this regard as it is standard practice in theoretical analysis [67]. Because
of this, we are assuming that processors share a common working space that all of them can
access. This might be an issue when implementing the algorithm, but one can get around it.
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To describe a parallel algorithm, we will incorporate into our pseudocode a parallel loop
in which we indicate what each processor does. When a parallel loop is executed, our con-
vention is 1) that each processor has read from the memory whatever values it need to
operate with and 2) that each position of the memory can be modified by at most one pro-
Cessor.

Example 4531. Let’s consider the example of the Algorithm PARMULTIPLICATION that multi-
plies n numbers in parallel. In the second parallel loop, even though x; might be modified by
SOme processor, every processor needing its value has read it before the parallel loop has
started. The reader should consider the practical challenges that this feature of our parallel
computational model implies. A

Algorithm 7: PARMULTIPLICATION

Input PX1,..., X, €ER
¢ «— [logn]
fori=n+1,...,2°¢ parallely do
tx,w—l

fori=1,...,¢{do
Lfori =1,...,2¢7 parallely do

L Xj < Xgj—1X2j

return x;

Output [l xi

To measure the run-time of a parallel algorithm, we will take as the run-time of a parallel
loop the run-time of the longest computation in it. However, together with this parallel run-
time, we will indicate the minimum number of processors needed. Note that the sequential
run-time is the parallel run-time times the number of processors.

Remark 4532, Assuming that multiplications are constant-cost, Algorithm PARMULTIPLICA-
TION runs in parallel O(log(n))-time with O(n) processor. Note that the parallel run-time
is logarithmic in n while the usual run-time is linear in n under this assumption. Note that
the assumption that multiplications are constant-cost is reasonable when we operate with
floating-point arithmetic.

However, we should be careful when multiplications are not constant-cost. Assume
that x4, ..., x, are integers of bit-size at most b which we multiply with standard multiplica-
tion. Then Algorithm PARMULTIPLICATION runs in parallel O (n?b?)-time with O(n) processor
which equals the sequential run-time O(n?*b?). The reason for this is that the size of the
numbers is growing and so does the time that each parallel loop requires. Nevertheless, we
note that if we use a parallel algorithm for multiplying integers, such as that of Bunimov and
Schimmler [81], that takes whose parallel time is bounded by O(log b), then Algorithm PAR-
MuLTIPLICATION will run in parallel O(log?(n) log(b))-time. q
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Parallel k-ESTIMATE

To parallelize Algorithm k-ESTIMATE, we only have to pay attention to how we parallelize
the computation of

max{k(f", x) | x € Gy, #L < n + 1}

This can be easily done following a trick similar to that of Algorithm PARMULTIPLICATION. Let
PARMAX be the parallel algorithm obtained from Algorithm PARMULTIPLICATION after substi-
tuting the initial 1 assignment by a —oo assignment and the multiplication xs;_1 xs; by the
maximum max{ xs;_1, X2; }. Note that computing the maximum of two numbers can be as-
sumed to have a constant run-time along the full algorithm. With the help of PARMAX, we can
paralellize Algorithm k-ESTIMATE to obtain Algorithm k-PARESTIMATE.

Algorithm 8: k-PARESTIMATE

Input 1 f € Hylq]
pe(0,1)
B € (0, o0]
ne—2o
repeat
nMe—n+1

for x € Gy, L € [q]="*! parallely do
| K(x,L) = k(5 x)
K« (1- p)—IPARMAX(K(X, L) | x € Ga, L € [q]Sn—f—l)

until DK2™" < p(1 + p) or B < K

if B < K then
| return fail

else
L return K

Output :fail or K € (0, o0)
Postcondition: If fail, then B < K < k(f);
otherwise X(f) < K < (1 — p)~'k(f)

Arguing as in Theorem 4528, the following theorem is immediate.

Theorem 4531. Algorithm K-PARESTIMATE is correct. Its parallel run-time on input (f, p, B)
is bounded by

O (n® + N+ nlog (gnDmin{B,x(f)}p™"))
and its number of processors is bounded by O (g (gnDmin{B,k(f)}p~")"). =

Using the probabilistic bounds, we can see that the expected parallel run-time is finite
and that with high probability the number of processors in singly exponential. This still holds
when the input is H(p), with p € Pq4[q].
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Corollary 4532. Let { € Hy[q] be a random KSS polynomial tuple, p € (0,1) and B > 0.
Then, on input (1, p, B), the parallel run-time and number of processors required by Algo-
rithm k-PARESTIMATE are, respectively, at most

n
0] (n3 + N+ nlog (min {B, (qD)O(”)} p‘l)) and O (q (an min{B, (qD)O(”)}p'l) ) ,
with probability at least 1 — (2gD)™".

Proof. This is Theorem 4531 combined with Proposition 1535. m|

Parallel construction of the simplicial complex of SPHERICALHOMOLOGY

When we construct the simplicial complex in SPHERICALHOMOLOGY, there are three
steps that have to be parallelized: 1) the construction of the cloud of points ij 2) the con-
struction of the Vietoris-Rips graph, and 3) the construction of the final simplicial complex.
All of these parts of the algorithm can be easily made parallel.

We show in Algorithm PARHOMOLOGYWITNESS how the parallelization can be done ex-
plicitly. Instead of encoding the sets as sets, we encode them as appropiate indicator func-
tions. In this way, in Algorithm PARHOMOLOGYWITNESS, the ij are represented by maps
S : Gi — {0,119 the edges of the Vietoris-Rips graph by amap E : (gz“) — {0,1}
and the final simplicial complex as amap S : [Gs] =" — {0, 1}.

The following theorem is proven in the exact way as Theorem 45210.

Theorem 4533, Algorithm PARHOMOLOGYWITNESS is correct. Its parallel run-time on input
(f, ®) is bounded by
O (size(®) + N)

and its number of processors by O (q (131nDK( f))Qn(n+2))_ O

Remark 4533. The main reason we have omitted the call to Algorithm K-PARESTIMATE in
Algorithm PARHOMOLOGYWITNESS is to emphasize that the parallel run-time is independent
of the condition number. However, one should notice that the number of processors does
depend on the condition number. q

Remark 4534. Assume that ® is already negation free. One can optimize the algorithm in
this parallel setting, by evaluation ® in a parallel way. This would substitute the size of ®
by its depth, which is the maximum number of concatenated parentheses that appear in
®. Further, even if the depth is not small, by Brent’s theorem [82; (27.35)], one can always
rewrite ® in a way that its depth is the logarithm of its size up to a constant factor. 19
Remark 4535. If we are interested only in the first £ homology groups, there is no need to
construct the full (n 4 1)-dimensional simplicial complex. This brings down the number of
processors to O (q (131nDE(f))2”(€+2)), but leaves the parallel run-time unchanged. |

As above, Theorem 4533 with Proposition 1535 give the following corollary.

Corollary 4534, Let f € Hy[q] be a random KSS polynomial tuple and ® a Boolean formula
over f. Then, on input (f, ®), the parallel run-time and number of processors required by
Algorithm PARHOMOLOGYWITNESS are, respectively, at most

O (size(®) + N) and (D)2,
with probability at least 1 — (2gD)™". O
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Algorithm 9: PARHOMOLOGYWITNESS
Input : f € Hylq]
Boolean formula ¢ over p
K € [0, 00)
Precondition : k(f) < K < 1.02k(f)

eliminate negations in ¢

0 — 1/(9(n+ 2)DK), Xy < 0
fori=1,...,n+ 2 parallely do

9; « (2 —1)8, o; « 2i0

L Koj—1 €= 3j, Koj = RAj,XKo(ign42)-1 €= =9, XKo(j+nt2) < —H;
i « [log 2700(n + 2)D?K?|

€ —1/ (277(n + 2)D%K)

Initialize S=, S= : [G4]=""* — {0, 1}qx<4n+9>
forxegm,izl,...,qandj_o ,4(n + 2) parallely do
if f( ) (%] + D227 £l > Othen

| SE(x)) < 1, S5({x)) <0
else |f fi(x) — (K — D22 NI llw < 0 then

| SE({x}) < 0, S5({x)) 1
else

L SHON — LS5 <1

Initialize E : ($") — {0, 1}
for {x, y} € (9") parallely do
if dist(x, y) < 2¢ then

| E(fxy)) <1
else

| E({x.y}) <0
forAc[Gi="% i=1,...,gandj =0,...,4(n + 2) parallely do
SZ(A) « PARMIN ( 2 ({x). E({x, y}|x€A (yte(® )))
SA<—PARM|N( ({x}),E {xy}|x€A{xy}€()))
S7(A) «— mm{S ( ) SZ(A)}

1, iJ
Initialize S : [Gs] =" — {0, 1}
for A € G="** parallely do
| S(A) < @B (SSA)LSEALSSA) i € lgl.j € {0, A(n +2))

1, 1, 1,/

return S

Output : Indicator function S of (n + 1)-dimensional simplicial complex
homologically equivalent to S(f, @)
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Parallel computation of the homology

The parallel computation of the homology or Betti numbers of a simplicial complex can
easily be reduced to a parallel computation of, respectively, the SNFs and ranks of the bound-
ary operators. This reduces the problem to the parallel computation of the SNF or rank of an
integer matrix. We note that although one can obtain improvements by taking into account
the simplicial complex structure, Edelsbrunner and Parsa [169] showed that this would lead
to improvements in computations involving sparse matrices.

Despite the numerous successes for these problems for polynomials rings (see [400]),
there is not a satisfactory parallel logarithmic time algorithm for the SNF of integer matrices.
This phenomenon can be seen as a consequence of the current lack of parallel logarithmic
time algorithms for computing the greatest common divisor [361]. Because of this, we will
focus on the rank and comment the problem for the SNF.

Betti numbers In an algebraic model of computation, one can parallelize very eas-
ily the computation of the coefficients of the characteristic polynomial using the results of
Berkowitz’s algorithm [49]. With this algorithm, we can easily compute the rank of a matrix.

Theorem 4535 (Berkowitz’s theorem). Let Fbe afield. There is a parallel algorithm BERKOW-
ITZSAMUELSON that computes the coefficients of the characteristic polynomial of a matrix
A € F™™ in parallel run-time O (log? m) with O(m*) processors, in the algebraic computa-
tional model. |

Corollary 4536. Let [F be a field. There is a parallel algorithm PARRANK that computes the
rank of a matrix A € F™™ in parallel run-time O(log? max{m, m’}) with O(max{m, m’}*)
processors, in the algebraic computational model.

Proof. We compute AA* in parallel O (log max{m, m’})-time with O(nm)) processors. This
matrix has the same rank as A. Now, the rank of AA* is equal to degree of the character-
istic polynomial minus the order of X in it. The latter can be compute by a binary search.
Theorem 4535 and Algorithm BERKOWITZSAMUELSON finish the proof. |

We have now two ways to proceed, as we did with Algorithm PARMULTIPLICATION. On
the one hand, the above algorithm allows immediately for the computation of the mod p Betti
numbers in parallel time. The key point is that this over a finite field the algebraic model esti-
mates appropriately the run-time with respect the bit-size. On the other hand, using parallel
integer arithmetic for addition [286] and multiplication [81], we can translate the algorithm
PARRANK into a parallel polynomial-time algorithm.

For the computation of the mod p Betti numbers in parallel time, we obtaine the following
result.

Theorem 4537. There is an algorithm PARSPHERICALPRIMEBETTI, obtained from combining
Algotihms 8, 9 and PARRANK, to compute only the first € mod p Betti numbers. The parallel
run-time of this algorithm on input (f, ®, £, p) is bounded by

O (size(®) + n® + N + nlog (gnDK(f)) log p)

and its number of processors by O (q (131nDE(f))8n(€+2))_
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Proof. The first part is Theorems 4531 and 4533 and Corollary 4536. m|

We note that if we allow a probability of error, we can produce a Monte Carlo algo-
rithm for the rank reducing modulo a random prime as in [191; Lemma 4.7], but calling
Algorithm PARRANK instead. This has the advantage that it is more realistic in practice.

Theorem 4538. There is an algorithm PARSPHERICALBETTI, obtained from combining Algo-
tihms 8, 9 and PARRANK, to compute only the first € Betti numbers. On input (f, ®, £, 8), the
algorithm is correct with a probability of 8, its parallel run-time is bounded by

O(size(®) + n* + N + n*log® (gnDX(f)))
and its number of processors by O (q (131nDK(f))3"(+? Iog(l/&)). O

Corollary 4539. Let f € Hy|q] is a random KSS polynomial tuple and ® a Boolean formula
over §. Then, on input (f, ®, €, 8), the parallel run-time and number of processors required
by Algorithm PARSPHERICALBETTI /s, respectively, at most

O(size(®) + N + n*log? (gD)) and (gD)°"" ¥ 10g(1/8),
with probability at least 1 — (2qD)™". O

If we use parallel integer arithmetic, we obtain analogous results to above, but without
a probability of error. However, this certainty will come at a cost, since it will increase the
constants in the exponents appearing in the two results above by a factor of two.

All the above results can be translated to the affine case easily with analogous state-
ments.

Homology In the last years, there have been discovered some parallelizable algo-
rithms for computing the SNF of an integer matrix by Dumas, Saunders and Villard [161],
by Jager [233], and Jager and Wagner [234]. Further, Dumas, Heckenbach, Saunders and
Welker [160] have paid special attention to the computation of the SNF for computing ho-
mology groups. However, none of these algorithms has a complexity analysis giving parallel
logarithmic run-time. Actually, none of the algorithm has a satisfactory complexity analysis
giving an estimation on the parallel run-time, although all of the algorithms can be seen to
work very well in practice.

The above pose us to consider the following question, on which the parallelization of
the computation of homology relies.

Open problem G. /s there a parallel algorithm with parallel logarithmic run-time computing
the SNF of a (possibly sparse) integer matrix? In particular, is there a parallel algorithm with
parallel logarithmic run-time computing the greatest common divisor of n integers??

2We note that this particular case of computing the SNF is still open. As of today, the best parallel algorithm
for computing the GCD is by Sedjelmaci [361] and it runs in sublinear, but not logarithmic, parallel time.
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Remark 4536. We note that the claims in [88, 91, 92] about the easy parallelization of the
Algorithms SPHERICALHOMOLOGY and AFFINEHOMOLOGY, regarding the torsion coefficients,
are false. This should serve as a cautionary tale regarding assuming easy parallelizations
without references.® T

453-2 Numerical stability

We now perform an error analysis to show that Algorithms SPHERICALHOMOLOGY and AF-
FINEHOMOLOGY can output correct answers when run with finite precision. Doing this error
analysis is essential to transform our run-time bounds, where we count arithmetic operations
with real numbers at unit cost, into effective bounds that allow the algorithm to work in prac-
tice. In other words, we don’t do this tedious technical task because we like it, but because
we must do it to show that the algorithm is numerically stable. We will follow mainly the lines
of Cucker, Krick, Malajovich and Wschebor [139] for their algorithm for counting zeros.

First, we introduce the floating-point framework of numerical computation; second, we
provide some error bounds for the computation of some basic objects (scalar products,
evaluations of polynomials and their derivatives); third, we perform an error analysis of Al-
gorithms SPHERICALHOMOLOGY; and fourth and last, we state the error analysis for Algo-
rithm AFFINEHOMOLOGY.

Floating-point framework of numerical computation and error analysis

The floating-point framework of numerical computation is the bread and butter of the
numerical analyst. With it, one can perform an error analysis of numerical algorithms where
one sees how the errors grow as we perform the algorithm.

First, we introduce the floating-point number system, which is the approximation system
for numbers, second, the floating point model of computation, which is the set of assump-
tions on precision of basic operations that we assume; and third, error analysis, where we
state some results regarding the error assumptions of scalar products and matrix multipli-
cations.

Floating-point number system [n a fixed precision number system, the point does
not move. However, this can be annoying for writing numbers such as 0.00000283. This
motivates scientific notation in which the former number is written as 0.283-107°. The floating-
point number system is the formalization of this system of encoding numbers. All of this has
to be seen as an abstraction of the IEEE floating-point standard, which happens in real
computers. For more details, we refer the reader to [221; Ch. 2].

Definition 4531. [221; §2. 7] A floating-point number system in base b, with precision t and
exponent range [ey, e1] is the subset of R given by

Foot o= {xm-b""" | e € [ep, 2]NZ, m € [0,b'=1]AN} € [b%7", 6% (1-b7")]. (4.30)

SLet us remark that computing the SNF efficiently is a highly non-trivial problem. The first polynomial-time
algorithm is from 1979 by Kannan and Bachem [242] andit is still unknown whether any algorithm proposed
before that year is polynomial-time (see [415; Ch. 5] for an overview of the history of polynomial-time algorithms
for computing the SNF of integer matrices).
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The range of F;*:°" is the interval [b%~", b (1 — b™")] and the round-off unit of F}°%" is
Upt = %bl_t.

We note that every number in F as above can be written in the form
+0.d;dy...d; - b®

with 0.d1ds . . . dr a number written in base b, where each d| is an integer between 0 and
b—1,and e € [ey, e1] N Z. These numbers tend to accumulate around zero and become
more disperse when we go far from zero.

Together with F;*;°*, we consider the rounding map

floe : R — F, 7% = {mb* " |e€Z me[1-b' b -1NnZ} (4.31)

that maps each x € R to a nearest point in Fp ;. The main property of this map is that it
gives good relative error approximations.

Theorem 45310. [221; Theorem 2.2]. Let b, t € N. Then for all x € R,
flo.e(x) = x(1 + d)

for some & € (—Upy, Up ). In particular, |flp¢(x) — x| < up¢|x|. O

€0,€1
bt
}, we will say that x overflows with respect

°0-¢1\ {0}}, we will say that x underflows

We note that it might be the case that flp ¢+ (x) is too big or too small to lie inside F
In this case, if |flp.¢(x)] > max{|y| | y € FZ?t’el
to Fz?fl, and if 0 < [flp,¢(x)| < max{ly| | y € F};
with respect to FZ?t’el. This might be problematic, as the rounding becomes +co when x
overflows and £0 when it underflows.

To avoid tedious notation, we will omit all subindices and superindices from now on. We

will focus mainly on the round-off error unit u, which will be the quantity of major concern.

Arithmetic in floating point We note that given x, y € F, we want to compute
fast a good approximation of x op y, where op € {+, —, -, /}, and we also want that this
approximation stays in F. The main idea is that we want our approximate operation op to
behave like fl(x op y). This motivates the following assumption:

Standard model of arithmetic. For each op € {+, —, -, /}, there is an ap-
proximate operation op : F X F — F such that for all x, y € F,

xopy = (xopy)(1+8) (4.32)
for some & € (—u, u).

This means that we can assume that x op y = fl(x op y) in some sense. We will further
assume that the above holds also for the square root operation.

It is important to observe that for the floating point number system F
perform the above operations in run-time bounded by

€0,€1

bt one can

O((tlog b)? + max{log eol, log le1[}) = O(log® u™" + max{logeol, log le1}),

using standard arithmetic. This means that run-time of the numerical algorithm can be bounded
by the algebraic run-time times the above quantity, once we have a bound on how small the
round-off unit has to be and how big is the exponent range.
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Error analysis LetF(xy,..., x,) be some quantity or vector that we want to compute
from x1, ..., X, using the operations +, —, -, / and \/ We will refer to the value computed
by some round-off algorithm as fI*(F(x1, . . ., x,)), which is a floating point approximation
obtained by computing F from the values fl(x;), . . ., fl(x,,) using the approximate operations
+ 55 7and Q Note that fI#(F(xy, ..., Xx,)) and how good it approximates F(xy, ..., X,)
depends not only on the parameters of the floating point system, but also on the round-off
algorithm.

Note that fI*(x op y) = fl(x) opfl(y). So we should not confuse fi?(x op y) and x op y.
The former gives the floating point approximation of the operation between two arbitrary real
numbers, while the latter assumes that these numbers are already written in floating point.

Our objective is to obtain round-off algorithms such that in the inequality

F(x1, ...y xn) = TB(F(x1, ..., X))l < Ge(xy, ..., XU
the value of Ge(x, . . ., X,) is small without worsening much the run-time. A usual parameter
that appears in error bounds is
ku
3(k) i= ——, 4.33
(k) = = (4.33)

which is defined only if ku < 1.
The following proposition is the basic approximation operation.

Proposition 45311. (+) |[fR(x = y) — (x = y)| < (|x] + |¥])3(2).
() Iff(x - y) = (x - y)l < [xy[3(3).
(/) 1f2(x/y) = (x/¥)| < |x/yl3(3).

(V) [P (Vx) = (Vx)| < [Vx]a(1). O
Remark 4537. We note that sums are unstable when x + y is much smaller than |x| + | y|,
i.e., when cancellation occurs. 19

Instead of writing (1 + p) where p € [-3(k),3(k)], we will just write (1 + [k]). The
following proposition gives the major properties of this new symbol.

Proposition 45312, [221; Lemma 3.7 and 3.3]. Let k, | € N, the following holds

(L + kDA + D) = A+ [k +1T)
L+ KD+ 1D = A+ [k + 11, ifl <k
(L+ kDA + D™ = (1 + [k +2/], ifl > k
3(k)3(/) < 3(min{k, 1}), if max{k,/}u <1/2
ka(/ ) 3(k1), if klu <1
3(k) +u<3(k+1), if (k+1)u <1
3(k) +3(/) +3(k)3 () 3(k +1), if (k +Nu < 1.

In particular, let p € {—1,+1}™, then

n

[ ]a+npe =a+m 0

i=1
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Using the above propositions, one can easily prove the followings proposition that will be
very useful for us. We will focus on the computation of inner products, norms and products
of matrices. Since the error bounds presented here are standard, we omit the proofs.

Theorem 45313, [221; §3.1]. There is a round-off algorithm computing the inner product
(x,y) for x, y € R? such that

*((x, y)) = (x, y) + [[log a1 + 3){|x1. |y])

where |z| := (|Z1| e |Za|) . The algorithm has run-time bounded by O(a).
Moreover, let x, y € F, be such that for all i € [n],

%i = (1+ [kDxi and g; = (1+ [)ys

then
f2((x, ¥)) = (x, y) + [[log a1 + 1 + k + I]{|x], |y])-

Sketch of proof. Adding from left to right, we can easily see that
f((x, ¥)) = (x, y) + [a+ k+1].

The desired result follows from putting the sum into a tree. Note that the original result is the
result for the case k =/ = 1. O

Corollary 45314. There is a round-off algorithm computing the norm || x|| for x € R? such
that
(x|l = [Ix[I(1 + [4 + log a]).

The algorithm has run-time bounded by O(a). m|
The most important consequence of this result are the following two propositions.

Proposition 45315. There is a round-off algorithm computing f(x)/||f|lw for f € Hgy[q]
and x € S" such that

I2CF OO/ lw) = £ /I Fllwll < [D + 4[log(N)] + 15]
The algorithm has run-time bounded by O(N).

Proof. For evaluation, we use the usual algorithm. Consider the monomial vector (x), then
fi(x) = ((fi«), (x%)). Note that for each «, fi*(x*) = x%(1 + [D]). Therefore, by Theo-
rem 45313, we get

f%(fi(x)) = fi(x) + Ifillw[D + Mlog(N;)T + 3],

where we used Corollary 1517 to bound {(|f «), f2((x*))). By Corollary 45314, we have
that

I Iw) = IF lwll < NI llwITlog(N)T + 4],

and so that

86 OO/ ) = GO/ Il + fillw/ I llw[D + 4[log(N)] + 15].
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Combining these relations, we get

IF5CF )/ llw) = £ )/ llwll < [D + 4[log(N)T + 15],
as desired. O

Proposition 45316. There is a round-off algorithm computing AalD xf /||f|lw such that
112(AG Dxf /11 llw) = Ag'Daf /I Fllwll < [D + 4TIog(N)T + 20].
The algorithm has run-time bounded by O(nN).

Sketch of proof. The proof is analogous to the previous one for computing Aalﬁxf . The
extra constant comes from the multiplication with the orthogonal projection. m|

Error analysis of Algorithm SPHERICALHOMOLOGY

We note that in Algorithm SPHERICALHOMOLOGY, the numerical errors can only occur at
three points: 1) Call to the Algorithm k-ESTIMATE, 2) Construction of the clouds of points X[‘j
and 3) Construction of the Vietoris-Rips graphs. The remaining operations are symbolic and,
hence, don’t have numerical errors. The main result we will obtain is the following theorem.

Theorem 45317. There is a round-off version of Algorithm SPHERICALHOMOLOGY with the
same asymptotic complexity as Algorithm SPHERICALHOMOLOGY which is guaranteed to work
correctly when the round-off error unit satisfies

1
Y= O(qnDx(F))

The above theorem wiill follow from performing an error analysis on the parts of Algo-
rithm SPHERICALHOMOLOGY mentioned above.

Computation of k(f, x) and k(f) The main issue with Algorithm k-ESTIMATE is the
computation of k(f, x) for f € Hy[q], x € S” and L € [g]="*!. This will be the main result
here.

Lemma 45318. There is a round-off algorithm computing k(f, x) for f € Hgy[g]and x € S"
such that
flA(k(f, x)) = (£, x)(1 + [O(n*(D + log(N)))]).

The algorithm takes O(n® + nN) operations.

Proof. Using Propositions 45315 and 45316, we can evaluate f(x)/||f|lw and
Aalef /I f llw. We use now a backward stable version of the QR algorithm, as described
in [221; Ch. 19], for which we have then

?(0q(Ag Dxf /I llw)) = 0g(Ag'Dxf /I llw)(1 + [O(n*(D +log(N)))])

since [|Ay'Dxf/IIfllwll < 1, by Corollary 15%7.
We finish computing the norm of (12 (£ (x) /|1 [lw), i (oq(Ag'Dxf /I llw))) and invert-
ing it. i
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Theorem 45319. There is a round-off version of Algorithm k-ESTIMATE with the same asymp-
totic complexity as Algorithm K-ESTIMATE which is guaranteed to work correctly when the

round-off unit satisfies 1

< .
O(n?(D + log(N)))
Proof. We only need to strengthen the inequality 2DK < 1 in Algorithm k-ESTIMATE to 3DK <
1. Now, by Lemma 45318,

R(K(F, x)) = K(f, x)(1 + [O(n*(D + log(N)))])-
Taking u as chosen with a sufficiently large constant guarantees that
flA(k(f, x)) = &(f, x)(1 £ 0.01)

and so the correctness of the upper bound K. m|

Construction of the cloud of points We will now assume that we are working in
base 2 for the sake of simplicity. To avoid numerical errors, we will substitute certain choices
in Algorithm SPHERICALHOMOLOGY by choices that can be represented exactly. So we have
the following new choices:

0 — 2 [log(9(n+2)DK)
1 « [log(9(n + 2)DK) + [log(30D2)] + [log(V2K)] + [log D=7 + &

With these choices, we have that all the >x; have an exact representation in the floating-point
system.
Now, instead of checking

1 -~ 1 .
fi(x)/||fi|l = »; — D227 and f;(x)/||f;|| < x; +D227",
we will check
RE)/NEN) 2 x5 =27 and (£ (x)/ I ll) < x; +27",

where 1y = [log(9(n +2)DK)] + [Iog(30D%)] + [log(V2K)] + 7. The sum/difference on the
right-hand side has an exact floating-point representation as long as
1
S N, ~—
O(nDk(f))

since x; = +k;2~ 110900 +2)DK) for some non-negative integer k; of size O(n). With these
substitutions, we obtain sets fla(Xi"fj), and for ¥ a lax formula over (f, ), sets fi2(X(¥))
constructed from the ﬂa(X/fj) using the formula ®.

We now prove a floating-point version of the sampling theorem (Theorem 451), taking
advantage of the fact that the inequalities in it were asymmetric.

Proposition 45320 (Floating sampling). Assume that [D + 4[logN] + 15] < 2%, In
the above setting,

sty (TR(X (1)), S(F, x, 7)) < 2 02(0(7+2DK)1-[log(300%)1-6
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Proof. The proof is as that of the sampling theorem , so we reduce to the purely conjunctive
case without loss of generality. If x € ij, then

FO)/IA < x5+ (27 + D+ 4TlogNT + 15]6(x)/ 1611
by Proposition 45315. By Corollary 157, |f;(x)/||fi||| < 1, and so, by our assumption,
OO/ <k =217,
Analogously, if x € Xi’zj,
OO/ NI 2w =217

By Proposition 2513, this implies that
. 1
X (W) € U (S(F, % 0), V2R(F)2' ™) c U (S(f,m, @), 27109(9(7+2)DK) 1 Tlog(80D)1-6

Now, for all x € S(f,x, ®), there is some gx € Gy such that dists(x, gx) < 27" Therefore,
by Proposition 253, g, € SD%z (f, >, ¥). Now, arguing as above, this means that

gx € fR(X(T))

since the absolute error for evaluating f2(f; (gx)/||fi|lw) is at most 27"~ as proven above,
and D227 < 2770~ Hence

S(f, %, W) € Us(fR(X(D),27") c U ﬂa((\’(\y),2-f'°9<9<"+2>DKﬂ-f'09<30D%>1-6 ,

as desired. O

Construction of the Vietoris-Rips graphs

We have constructed the clouds of points. We next construct the Vietoris-Rips graphs
of these clouds. We will assume that we work with the uniform grid for simplicity. For a
general grid, one has to add a long argument about the floating-point approximation of the
points in the grid.

For this, let us note, that by the Vietoris-Rips homology witness theorem (Theorem 451 3)
it is enough to choice € > 0 such that

o~ M1og(9(n+2)DK)1-Tog(30D2)1-3 _ o  o=Tlog(9(n+2)DK)1- llog(300%)] (4.34)

Therefore we make the choice

&  9-10g(9(n+2)DK)1~[log(30D%)]-1

The points in fla(lexj) are not in floating-point form. However, they are points of the form

%/||%]| with x € 21=#=[31an]Zn+1 ¢ Fr+l Moreover, all the points can be expressed in
floating-point form with the same exponent. Because of this, we can translate

L_L‘Q

X1 1yl
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into the condition
IXIPNlyII°(1 - 2¢%)* < (X, y) and (x, y) > 0.

The latter can be checked exactly as long as

1

Y= 0moR(f))

This shows that the Vietoris-Rips complex can be constructed under the finite-precision
assumption.

Error analysis of Algorithm AFFINEHOMOLOGY

Since Algorithm AFFINEHOMOLOGY applies Algorithm 4 after homogeneization. The latter
needs the computation of ||f]jw, but this can be done with the help of Corollary 45314.
Because of this, we get the following theorem.

Theorem 45321. There is a round-off version of Algorithm AFFINEHOMOLOGY with the same
asymptotic complexity as Algorithm AFFINEHOMOLOGY which is guaranteed to work correctly
when the round-off unit satisfies

1

Uus ——.
O(gnDkas(f))

Using the probabilistic results of Chapter 1, in particular, Corollary 1546, we obtain the
following easy corollary.

Corollary 45322, Let | € Pq[q] be a KSS random polynomial tuple. The expected precision
of the round-off version of Algorithm AFFINEHOMOLOGY on input (f, ®) is at most

log(N) 4+ nlog(gD). O

Similar results can be obtained for the smoothed version using also Corollary 1546.
This shows that on average the precision needed by Algorithm AFFINEHOMOLOGY to com-
pute homology is linear in the number of variables and logarithmic in the remainder of the
parameters.

Remark 4538. We could use Corollary 1545 to obtain a run-time bound for integer polynomial
tuples. We only note that for these, we can bound the precision needed to be linear in the
bit-size of the coefficients and log(N), polynomial in D and exponential in n. |

Further comments

Most of the content in this chapter can be found in [92]. However, there are some
exceptions: the Vietoris-Rips homology witness theorem (Theorem 4513), the random and
recursive grids, which were adapted, respectively, from [300] and [214, 213], and the de-
tailed parallelization and stability analyses.

Regarding the parallelization, it is clear that the claims in [88, 91, 92] regarding the
existence of parallel polynomial-time algorithm for computing the SNF of an integer matrix
are false. However, the parallelization can be obtained for the Betti numbers.
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Regarding the stability of the algorithm, we observe that there are certain issues not
appearing in [139] that come from the change in how we construct the approximating clouds
of points and the need to not miss any edge in the Vietoris-Rips graph. However, one can
manage the analysis by the use of similar techniques to those in [139]. Nevertheless, one
should note that the avoidance of the use of Smale’s a-theory provides an improvement in
the amount of needed precision.
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Statt des térichten Ignorabimus heisse im Gegenteil unsere Losung:
Wir missen wissen,
Wir werden wissen.

David Hilbert, Naturerkennen und Logik (8. September 1930)

A look into the future

As a human activity, mathematics is something that is done. No matter how much
understanding one collects, there will be open questions that one is unable to answer. The
health of a mathematical area is, therefore, judged by the vitality of its ongoing research and
not by its achievements alone. When a mathematical area runs out of impetus, it can die.
In the best cases, the area dies of success—the old achievements tear apart the area into
many new directions that cannot be anymore under the same roof. In the worst cases, the
progress seems impossible—the absence of new ideas makes the area sterile and hard to
inhabit.

The objective of this chapter is to show that the study of grid methods in numerical real
algebraic geometry is in good health. We do this by showing results that point out to the
fact that there are still major developments to come. We accompany this exposition by a
research program, which we call natnneTtka, that points out to many future possible lines of
research that the author intends to work in.

First, we show that is possible to obtain probability tail bounds for the condition num-
ber of random polynomials that do not follow the KSS random model; second, we show
that there can be algorithms in numerical real algebraic geometry for which the expected
run-time is finite; third, expanding on the latter point, by showing that one can estimate the
condition number in average exponential time and in average parallel polynomial time (with
average exponential number of processors); fourth and last, we give the natuneTka program
pointing to the possibility of a numerical algorithm for computing the homology of semialge-
braic sets in average singly exponential time and studying the classification of real algebraic
and semialgebraic sets from a computational approach.

551 Beyond normal distributions: robust tail bounds

We will show bounds for the condition number of random hypersurfaces. These bounds
are based in the techniques developed by Ergur, Rojas and Paouris [175, 176], but they were
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given in the form presented here mainly by Cucker, Erglr and the author [136]. We now fulffill
the promise that we made in the probabilistic analysis via geometric functional analysis of
Section 152,

First, we introduce the random model we will be working with, dobro random polyno-
mials, and discuss some of their properties; second, we give the tail bounds for the local
and global condition number; and third, we discuss the optimality of the bound for the local
condition number by computing tight estimates in the Gaussian case.

551-1 Dobro random polynomials

The main range of random variables that we will deal with are random variables that
behave like Gaussian random variables.

Definition 5511. Let x € R be a random variable. Then we say that:
(P1) xis centered if Ex = 0.

(P2) xis called subgaussian if there exist a K such that for all / > 1,

(E|x|/)% < KVI.

The smallest such K is called the ¥5-norm of .

(P3) x satisfies the anti-concentration property with constant p if, for all € > 0,

max{P (jx—u| <e) | ueR} < pe.

Remark 5511. The subgaussian property (P2) has many equivalent definitions. We refer the
interested reader to [399; §2.5]. 19

These properties generalize properties that a Gaussian variable has.

Proposition 55'1. Let x € R be a random variable. If x ~ N(0, o), then x is a centered,
subgaussian random variable that satisfies the anti-concentration inequality with ¥4-norm o

and concentration constant ——. O
\Vero

The above motivates the following definition, which gives the class of polynomials that
our probabilistic analysis will apply to.

Definition 55*2. [136; Definition 3.1]. A dobro random polynomial € FHy with parame-
ters Kand p is a random polynomial

d\:
i g::d (a) toX (5.1)

such that the ¢, are independent centered subgaussian random variables with ¥5-norm < K
and anti-concentration property with constant p. A dobro random polynomial §f € Py is a
polynomial £ such that its homogenization " is so.

Remark 5512. The term ‘dobro’ (‘006po’) is a Russian word which means good. |
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One important feature of this class is that it allows many random polynomials, including
the KSS random polynomials.

Example 551 (KSS random polynomials). Any KSS random polynomial is a dobro random
polynomial with parameters k = 1 and p = 1/v2m since each ¢4 in (5.1) is Gaussian with
unit standard deviation. A

Example 552 (Weyl random polynomial). [136]. A Wey! random polynomial is a random
polynomial f such the ¢y in (5 . 1) are i.i.d. random variables with uniform distributionin [-1, 1].
Every Weyl random polynomial is a dobro random polynomial with parameters K = 1 and
p=1/2.

We observe that this probabilistic model can be seen as the limit of the sequence of
random polynomials (f(b)) where the c((,b) are independent random variables uniformly dis-
tributed in [—2”, 2b]. This last model is discrete and it would be interesting to extend the

techniques to such random models. A

Example 553 (£-exponential random polynomial). [136]. An €-exponential random polyno-
mial is a random polynomial f such the ¢ in (5.1) are i.i.d. random variables with density
function given by

r(1+3) e, ift>0
LTSS
0, otherwise.

For £ > 2, an €-exponential random polynomial is a dobro random polynomial with param-
eterK=1and p = 6/5. A

Dobro random polynomials form a robust class under a wider class of transformations.

Proposition 5512, [et | = 2lal=d aX* € Hy be a dobro random polynomial with param-
eters Kand p. Then:

(1) Forall X € R\ 0, Af is a dobro random polynomial with parameters A\K and A~ p.

(2) Let (Aa)|a|=a be @ sequence of non-zero real numbers. Then

D AafoX®

|a|=d
is a dobro random polynomial with parameters (max |Aq|) K and (min [Aq|) ™" p.

Proof. The effect on K follows from the fact that the expectation is linear. The effect on p
follows from the fact that for all A # 0,

max{P (Ax—u| <e)|uecR} =max{P (x—u| <A 7'e) | uecR}. O

Remark 55'3. The parameter our analysis will depend on is the product Kp. Note that this
parameter is invariant under scaling and does not vary much if we scale the coefficients of
the dobro random polynomial in a way that the coefficients are not far from a uniform scaling.
The latter shows a certain robustness of the parameter.

For this parameter, it is easy to see that we have Kp > }l [175; (1)]. 19
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55 —2 Tail bounds for the condition of a dobro random polynomial

The main theorem here looks very similar to Theorem 15217, both in its statement and
in its proof. The main difference is that now we are dealing with just one polynomial and that
this polynomial is more generally a dobro random polynomial and not just a KSS random
polynomial.

Theorem 5513, [136; Theorem 7.1 and 7.10].

(A) Let i € Hy[1] be a dobro random polynomial with parameters K and p, and x € S”.
Then for t > e,

n+1 1 n+1
a1 N\ 2 [In2t
P(k(f, x) > t) < 2(30Kp) (—n n 1) ( ; ) .

(S) Let f € Hy[l], o > 0, f5 := f + ol|f|lwf be a random polynomial such that f € Hy[1]
is a dobro random polynomial with parameters K and p, and x € S". Then for t > e,

NV (e 1
P ,x) > t) < 2(30Kp)"tH [ —— 14+ — )
om0 < (2] (2 (12

The proof of Theorem 55 3 relies on two basic results from geometric functional analy-
sis. The first one controls the tail bound of the norm, just as Proposition 15111 did, and the
second one the concentration of a projection, just as Proposition 15218 did.

Theorem 554. Let x € RN be a random vector whose components x; are independent
centered sub-Gaussian random variables with ye-norm < K. Then for all t > 5KVN,

+2

P(z]| >t) <e 607, (5.2)

Proof of Theorem 554, Note that ||x|| > ¢ is equivalent to e5"IKI” > es°t* Therefore, by
Markov’s inequality [164],

P > t) < e s CEeS I’

Now, by independence,
N
R
i=1

2/|E$2/ 00

Z 2/KQ/ 2/ < Z(2GK2 /)/

=1

For each i,

(o]

521$2
e =525
/=0

where the first inequality follows from the definition of subgaussian and the second one from
Stirling’s approximation /! > (//e)’.
Let s2 = 1/(4eK?). Then, substituting above, we get

P(Hx” > t) = 2Ne_t2/(4e|<2).
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Now, we can see that for t > /8eIn(2)KVN, we have

P(|z]| > t) = e /@K,
Hence the proposition holds for the constant in the statement. m|
Definition 551 3. The concentration function of a random vector x € RX is the function

Li(e) =maxP(|lx—ul|l <e). (5.3)
ueRK
Theorem 55! 5 (Rudelson-Vershynin concentration theorem). [351; Corollary 1.4] and
[280; Theorem 1.1]. Let x € RN be a random vector whose components x; are independent
random variables with the anti-concentration property with constant < p. Then forall k € [n],
all orthogonal projections P : RN — R¥ and every € > 0,

6pe k

Vk
Proof. The constant comes from [280]. There the authors showed that it is enough to take
24/me. We bounded this number by the nearest integer. |

Remark 554. The above explicit values for the constants were missing in the statements
in [136]. We give explicit constants, so that one can get explicit probability estimates. In
order to find the explicit values, we rework the usual arguments in [399] for Theorem 5514
and we used the constant in [280] for Theorem 55 5. q

Proof of Theorem 5513. (A) Note that in the case of a single polynomial, we have that
k(f, x) = |Ifllw/Il R« fll, where Ry is the orthogonal projection of Proposition 156 and
|| R, §|| the Euclidean norm of R, f € R+, Therefore for all t > 0 and u > 5KVN,

P(k(f, x) 2 t) = P ([[flw/ll Rx (DI = 1)

<P (lIfllw = wor | Re(P)Il < u/t) (Implication bound)
< P(llflw = u) + P (IR (D < u/t) (Union bound)
u2
<e 7 L P (| Ryl < u/t) (Theorem 55 4)
_ 2 6pu i
<e GK? 1 (—) (Theorem 55 5).
vn+1t

Substituting 5SKYNIn ¢ > 5KVN in the place of u, we obtain

N n-‘2-1 |1 n+1
nz t
P(k(f, x) > t) < t™N + (30Kp)" [ —— )
(k(f,x) = t) <t + (30Kp) (n+1) (t)

The bound ¢t™N < ¢~("*+1) finishes the proof.

(S) The smoothed case follows a similar pattern. We only need to substitute Theo-
rems 5514 and 555 by versions for f5. These are easy to obtain. By the triangle inequality
and Theorem 5514, we have that

_(t-1)?

P(llfsllw > tlIflw) < P(llfllw > (t = 1)07") < e K7
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for ¢ > 1 + 5KoVN. Theorem 5515 applies directly to fs.
The rest of the proof is as above, but substituting v by 1+56KVNInt < (16)56KVNIn ¢
now. ]

Once we have the bound for the local condition number, we can give the bound for the
global one as we did in Theorem 15219,

Theorem 55'6. (4A) Let f € Hy[1] be a dobro random polynomial with parameters K and
p. Thenfort > e,

=l In"+1 t
2

P > t) < 12(180Kp)" ! [ —— D" )

(k(f) = t) ( P) (n+1) ;

(S) Letf € Hy[l], o > 0, f5 := f + ol||f|lwg be a random polynomial such that g € Hy[1]
is a dobro random polynomial with parameters Kand p. Then for t > e,

P(k(fs) > t) < 12(180K )n+1 L - o N ¢ L l n+1
T - P n+1 t pu .

Proof. We let G be Ny of Lemma 15220. Following the proof of Theorem 15219, we
conclude that
P(k(f) > t) < #G max P(x(f, x) > t/2).
X€E

Now, we just use that #G < (2Dt)" by Lemma 15220 and the bound from Theorem 553,
i

551 -3 Tail bounds for the local condition of a KSS random polynomial
Note that we can write the local condition number of a single polynomial f € Hy[1] as

[1Qx (F)II?

=\ e

where R is the orthogonal projection from Proposition 15*6 and Q, : Hy[1] — RN-"-1 g
the orthogonal projection complementary to R,. This implies the following proposition.

Proposition 557. Let f € Hy[1] be a KSS random polynomial and x € S". Then k(f, x)
has the same probability distribution as

-1
R
n—+1

where § € [0, o) is a random variable with the Fisher-Snedecor distribution with N — n — 1
and n + 1 degrees of freedom. O

Recall that the Fisher-Snedecor distribution Fi ; with k and / degrees of freedom ap-

pears when we take random variables of the form ,i—’f) with ¥ and vy independent random
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variables with a x?-distribution with, respectively, k and / degrees of freedom. It is known
that its density function is given by

T ktl k -
2 k\? x4 k
cEr(\r) T
r(5)r(s)
for t > 0. We can give now an explicit formula for the density of the local condition number
of a KSS random polynomial.

k+/
2

Theorem 5518, Let f € Hy be a KSS random polynomial of degree d > 1 and x € S”.
Then the density function of k(f, x), 8 x)(t), is given by

(N —nh-— 1)N—n—1
e () | e

fort > 1.

Remark 55'5. The assumption on the degree is equivalent to N > n + 1. Note that if this
does not hold, i.e., N = n + 1, the condition number is always one. 1

Proof. We just apply the change of variables theorem from integration to the density function
of the Fischer-Schnedecor distribution. ]

We do some estimation of this formula, so that it can be digested in an easier way.

Corollary 5519, Let f € Hy be a KSS random polynomial of degree d > 1 and x € S”.
Then forall t > /2,

n+1
1 N | 2 n+1 \™ f—(n+2)
612‘/,[(,7_’_1) n+1 N—-n+1

< By (t) <

+1

nrl +1
12 1 (zeN) 2 ( n+1 )” ~(n+2)
NE— :

5Vnvn+1\n+1 -n+1
Proof. First, using Stirling’s approximation (1 .21), we have that
N-1 N N-1
I‘ =
1 Nz § 3 _ 6 N2

N-n-2 -

VEN-n-1"3(n+1): D)) 5VR(N-n-1)"3 (n+1)3
Second, we have the equality

a0

|
vz

t2
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Third, for ¢ > V2, we have that

and

[N1p-4

n - N(n41)2
<|1+ —1 5 < (eQ(N—Jﬁl)Q) ? = @ (N-n-1)2 312
1 {N=n-1
2 ( n+1 )
where the last inequality follows fromN/(N-n—-1) =1+ (n+1)/(N-n—-1) < 3 and
(n+1)/(N=n—1) <2/n, since N > ("+?) under our assumptions.

2
To obtain the inequalities in the statement, apply the above three estimates together

with
N-n-2 5]
N 2 1 N—-n—-2 n+1 n+1
1< m = 1+N—n—1 <eN-r-172 < e 2,

n+1
This finishes the proof. |

IA

The above translates immediately into the following estimates of the tail bound.

Corollary 55110. Let f € Hy be a KSS random polynomial of degree d > 1 and x € S”.
Then forall t > /2,

n+l

+1
1 N Y2 [ n+1 \" ()
el2\m(n+1)s \n+1 N-—n+1

<P(k(f,x) > t) <

n+1

= +1
12 1 2N\ 2 [ n+1 \" Y
5vrvn+1\n+1 N—n+1

Proof. We integrate the density function on [t, co). i

When we compare these bounds with the bound in Theorem 553, we can see that the
main difference between the two bounds is, on the one hand, the ocurrence of In% t, and,
on the other hand, the above factor

n+ 1 n+1
(N -n+ 1) '

"*2), shows that

2

n+1 n+1 9 n+1
- S — s
N—-n-+1 n

which means that as n goes to infinity, the upper bound goes to zero. Note that this does
not happen with the bound in Theorem 551 3. This motivates the following question.

An easy estimation, using N > (
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Open problem H. Can one tighten the bound in Theorem 553 to match the bound in
Corollary 581107 Or there are differences arising from the differences between the class of
dobro random polynomials and KSS random polynomials?

552 1st adaptive case: Plantinga-Vegter algorithm

The Plantinga-Vegter algorithm [315] is a subdivision based algorithm which computes
an isotopic piece-wise linear approximation of an implicit curve in the plane or an implicit
surface in 3-dimensional space. Among many other algorithms for this purpose (see [71]),
the Plantinga-Vegter algorithm is interesting because it guarantees a global isotopy without
guaranteeing the isotopy locally.

In this section, we give a condition-based complexity analysis of the subdivision pro-
cedure of the Plantinga-Vegter algorithm, which was proposed by Burr, Gao and Tsigari-
das [98]. A consequence of this analysis is that it will give a bound for the expected com-
plexity of the algorithm for dobro random polynomials. This analysis was given for the first
time by Cucker, Erglir and the author [136]. Its importance is two-fold. On the one hand,
this is the first case of an algorithm in numerical real algebraic geometry with finite expected
time. On the other hand, it provided an explanation of why the Plantinga-Vegter algorithm
was efficient in practice.

First, we introduce the Plantinga-Vegter algorithm (PV Algorithm from now on) and its
subdivision procedure; second, we introduce the specific; and third and last, we give the
complexity analysis, both condition-based and probabilistic.

552-1 The PV Algorithm

We are interested in the problem of computing an isotopic piece-wise linear approxi-
mation to a real smooth hypersurface in R"” described implicitly by amap f : R” — R and
a region [—a, a]". We will further assume that the zero set Z(f) intersects transversely all
the boundary pieces of [—a, a|".

To evaluate f, we will assume that we can use interval arithmetic to compute the map
and its gradient vector. For X € R, let O[X] be the set of full-dimensional cubes [17" , [a;, b;]
included in X. Recall that an interval approximation of a function F : R™ — R™ isa map

o[F] : oR™ — oR™ (5.4)

such that for all J € OR™, F(J) € O[F](J).Intuitively, we should think that J gives error
bounds for the midpoint m(J) and O[F](J) error bounds for F(m(J)). See [321] for more
details and [422] and [421; §4] for further discussion on how realistic the interval arithmetic
model is.

Explicitly, let h, A" : R" — (0, o) be positive maps, we will assume that we have interval
approximations O[Af] : O[—a, a]” — Rand O[h’Vf] : O[-a, a]" — R" of, respectively, hf,
the function f scaled with h; and the gradient of f scaled with A’, A’V . The PV Algorithm
on [—a, a]” will subdivide this region into smaller and smaller n-cubes until the condition

Cr(J): either 0 ¢ O[AF](1) or 0 ¢ (T[A’'VF)(J), O[A' VF](J)) (5.5)
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is satisfied in each of the n-cubes J of the obtained subdivision of [-a, a]", where Vf is
the gradient vector of f and (-, -) the Euclidean inner product. Later, we will be precise
on the exact interval approximations and positive functions A, A’ that we will consider in our
analysis.

Let us deepen in the meaning of Cr(J). The first half of Cr (J) tells that £ has no zeros in
J. This allows us to discard boxes far away from Z(f). The second half tells that no pair of
gradient vectors of f are orthogonal in J. This second condition is where the key point lies.
On the one hand, it implies that every zero of f in J is smooth, if there is any; on the other
hand, and more importantly, it implies that there is a vector v such that f is increasing along
any straight path t — p + tvin J.

Below, we introduce Algorithm PVSuBDIVISION. The subroutine STANDARDSUBDIVISION
subdivides a n-cube J into 2”7 n-cubes whose edge-length is half of that of the original cube.
However, one can use other subdivisions without altering the correctness or effectiveness
of the algorithm.

Algorithm 10: PVSUBDIVISION
Input : f : R"” — R with interval approximations 0[hf] and O[h’Vf]
a € (0,00)
Precondition : Z(f) is smooth inside [-a, a]”
Z(f) intersects transversely all boundary pieces of [—a, a]"

S —{[-a.a]"}
S0
repeat
Take Bin S
S <S8\ {B}
if Cr(B) true then
| S« Su{B}
else
L S—Su STANDARDSUBDIVISION(B)

until S =g
return S

Output : Subdivision § C O[-a, a|" of [-a, a]”
Postcondition: For all B € S, C¢(B) is true

Algorithm PVSUBDIVISION gives only a subdivision. This subdivision should be postpro-
cessed in order to produce the piece-wise linear isotopic approximation of the hypersurface.
This postprocessing is only available for n < 3, see [315] for the details. It is still an open
problem for n > 4.

Open problem I. Generalize the postprocessing algorithm of Plantinga and Vegter for Al-
gorithm PVSUBDIVISION to higher dimensions.
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Remark 5521. Although Algorithm PVSUBDIVISION is not the whole PV Algorithm, its com-
plexity captures the complexity of the full PV Algorithm. Because of this, our complexity
analysis will focus on Algorithm PVSUBDIVISION. |

552-2 Specifications for the PV algorithm

We now specify a particular interval approximation to which our complexity analysis of
the PV algorithm will apply. We additionally provide a reformulation of condition Cr(J) into
condition C;(J), which will be easier to deal with for the produced interval approximation
and our complexity analysis.

Interval approximation construction

Our interval approximation will be based on finding A and A’ such that both Af and
h’Vf are Lipschitz. This will allow us to construct the interval approximation by combining
an evaluation in the midpoint of the box plus an error box. Recall that for J € OR"”, w(J) is
the width of J and m(J) the midpoint of J.

Theorem 5521, [136; §4.2]. Let

1 o 1
" i ez ) G e
Then
— (hf)(m(J)) + (1 + Vd)Vn w(J [—% %] (5.6)
and
J= (WVF) (M) + (14 Vd - 1)Vnw(J [—% %] (5.7)

are respectively interval approximations O[hf](J) and O[h’Vf|(J) of hf and h’Vf, respec-
tively, such that for all J € OR”",

disty ((hf)(m(J), O[hf](V))) < = (1 + Vd)Vn w(J) (5.8)

1
2
and

disty (W' VF)(m(J)), Ol V) < = (1 + Vd = 1)nw(J) (5.9)

l\DIr—l

Remark 5522. The interval approximations in [98] are based on Taylor expansion at the
midpoint, so they are different from ours. However, our complexity analysis also applies to
the interval approximations considered in [98]. 1

Recall the map tO : R” — ST from (1.29) that gives a diffeomorphism between R"
and the upper half of S”, S'. We note that

IDxOIl = 1/4/1 + [Ix][>. (5.10)

By direct computation, we easily see that for f € Py and x € R”,

FRI0(x)) = F(x)/(1+ [Ix|*)¥/2, (5.11)
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o]

Step O of PVSUBDIVISION Step 1 of PVSUBDIVISION
Step 2 of PVSUBDIVISION Step 4 of PVSUBDIVISION
A\

Postprocessing

Green: Z(f) Red: Subdivision Blue: PL approximation of Z(f)

Figure 5521: PV Algorithm applied to the polynomial £ = X* — 6X3 + 2X2Y2 — 6X2Y — 34X2 —
6XY?2 — 320XY + 376X + Y* — 6Y3 — 34Y2 + 376Y + 3128 in [-10, 102
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and _
Dxf df(x)x*
Dio(x D, H0 = - . 5.12
o) A P2 (17 Ix[2)e -
Let us write
~ f — Vf
0= e e ™ 7 G e

The following proposition and its corollary are the key pieces of the proof.

Proposition 5522, [136; Proposition 4.1]. Let f € P41 [k] be a polynomial map. Then the

map
f(x)

l_)
[[fllw(1 + [[x][2) (=172
is (1 + Vd)-Lipschitz and, for all x, ||[F(x)|| < v/1 + IIx]|%

Proof. For the Lipschitz property, it is enough to bound the norm of the derivative of the map
by 1+ Vd.Dueto (5.11),

"(10(x))
F(x) = V1+[Ix]? Tl
Thus, by Corollary 1517, we conclude the inequality.
By direct computation, the derivative of F equals
(t0(x))  x' Dio(x f"

+ 1+ ||x]?
Ifllw 1+ (x| (1€l

Now, [|f"(O(x))||/IIfllw < 1 and Diopf" < Vd||fllw, by Corollary 1517, Thus, by (5. 10),
we conclude that Fis (1 + \/E)—Lipschitz after taking norms. i

D, 0.

Corollary 5523. [136; Corollary 4.2]. Let f € P,. Then f and Vf are Lipschitz with Lips-
chitz constants (1 + Vd) and (1 + Vd — 1), respectively, and for all x, )f (x )‘ , HVf (X)HDS

1+ [1x]|2

Proof. The claims about f are immediate from Proposition 5522. For the claims about W
observe that Vf € Py_1y1[n] and ||VF]|| < d||f|lw. Thus Proposition 5522 completes the
proof. O

Proof of Theorem 5521. By Corollary 5523 and our choice of h and h’, hf = f and A’V =
V£ are Lipschitz. The rest is straightforward from the bound on the Lipschitz constants. O

A weaker Cr(J)

We show that if an interval approximation satisfies (5.8) and (5.9), as the one con-
structed in Theorem 5521, we can substitute condition Cr(J) by a weaker, but easier to
check, condition CZ(J).
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Theorem 5524. [136; Theorem 4.3]. Let J € OR" and assume that our interval approxima-
tions O[hf] and O[h’V | of hf and h’f satisfy (5.8)and (5.9). If

Co) : deiher \h(m(J)F (m(J)] >(1 + Vd)vn w(J)
' or [|A"((m()))VE(mU)Il > V2(1+ Vd = )nw(J)
(5.14)
holds, then so does Cr(J).

Lemma 5525, [et x € R"and s € [0, 1/\/5}. Then for all v,w € B(x, s||x||), we have
(vow) > |Ivilliwll(1 = 2s*) > 0.

Proof of Theorem 5524. When the condition on h(m(J))f (m(J)) is satisfied, (5. 8) guaran-
tees that 0 ¢ O[hf](J). Whenever the condition on hA’((m(J)))Vf(m(J)) is satisfied, (5.9)
and Lemma 5525, with s = 1/v/2, guarantee that 0 ¢ (O[h’Df](J), O[h’Df](J)). Hence
C7(J) implies Cr (J) under the given assumptions. O

Proof of Lemma 5525, Let s = cos 6, sothat 6 € [0,mt/4], c = Vl—c2and K, := {u €
R™ | (x,u) > ||x]||||u]lc} the convex cone of those vectors u whose angle with x, X u, is at
most 6.

Given v, w € K., we have, by the triangle inequality, that vw < v x +x w < 20 < /2.
Thus

COS VW > cos (VX +Xw) > cos 20 =1 —2s% > 0.

And so, it is enough to show that B ||(x) € K¢ or, equivalently, that d(x, oK.) < c||x]].
Now, d(x, oK) = min{||x — u|| | {(x,u) = ||x]||||lullc} where the latter equals the
distance of x to a line having an angle 6 with x, which is || x||s. O

552-3 Complexity analysis

We note that the complexity of Algorithm PVSuBDIVISION reduces to bounding the num-
ber of n-cubes of the output subdivision. This is so, because the run-time is bounded by

(Cost of testing Cr(J)) - #(output subdivision).

Further, by subdividing cubes in parallel, we can parallelize Algorithm PVSUBDIVISION ob-
taining a parallel algorithm whose parallel run-time is bounded by

(Cost of testing Cr(J)) - log #(output subdivision).

and its number of processors by O (#(output subdivision)).

For performing this complexity analysis, we will begin with a review of the so-called local
size bound framework, employed by Burr, Gao and Tsigaridas [98, 99], and on which our
condition-based and probabilistic complexity analyses will rely. After this, we introduce the
condition number adapted to this setting and we perform the complexity analyses.
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Local size bound framework
The local size bound framework is based on the following fundamental notion introduced
by Burr [97].

Definition 5521. [98; Definition 3.1] A local size bound for f is a function bf : R" — [0, o0)
such that for all x € R”,

br(x) < inf{vol(J) | x € J € OR" and C¢(J) false} .

The intuition behind the local size bound is that it gives a bound on how small should a
box be before it satisfies the condition C¢(J). More explicitly, if x € J € OR"” and vol(J) <
br(x), then Cr(J) holds. Note that the precondition on the input of Algorithm PVSuBDIVISION
forces that br(x) is always positive. This idea provides the following easy upper bound.

Proposition 5526. [98; Proposition 4.1] The number of n-cubes of the final subdivision of
Algorithm PVSUBDIVISION on input (f, a), regardless of how the subdivision step is done, is
at most

(2a)"/inf{bs(x) | x € [-a, a]"}. |

The bound above is worst-case, it considers the worst br(x) over the x € [-a, a]".
Continuous amortization, developed by Burr [97] and Burr, Krahmer and Yap [100], provides
the following refined complexity estimate which is adaptive.

Theorem 5527. [98; Proposition 5.2][100, 97, 98] The number of n-cubes of the final sub-
division of Algorithm PVSUBDIVISION on input (f, a) is at most

2[1
max 1, dx.
{ </[;a,a]" bf(X) }

Moreover, the bound is finite if and only if the algorithm terminates. |

Remark 5523. Although we don’t give a proof, the complexity analysis in the next section
shares many similarities with the complexity analisys that leads to Theorem 5527, |

To effectively use either Proposition 5526 or Theorem 5527 we need explicit estimates
for the local size bound.

Condition number and constructions of local size bounds

We introduce the condition number and give two constructions of the local size bound,
under different hypothesis of the construction of the interval approximation. The first con-
struction is the one by Burr, Gao and Tsigaridas [98] and the second one the one by Cucker,
Erglr and the author [136]. We show how both of them are bounded by the condition num-
ber.

Condition number Relying on Definition 1521, we introduce now the condition num-
ber adapted to our setting.

Definition 5522. [136; Definition 5.1]. Given f € P, the local affine condition number of f
at x € R™is ku(f, x) := k(F",FO(x)).
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The following result is a version of the regularity inequality with the functions introduced
in(5.13).
Proposition 5528. [136; Proposition 5.5]. Let f € P4 and x € R". Then either

1
2@ Kaff(f’ X) .

‘F(x)‘ or Hﬁ?(x)H >

1
>
2@ Kaff(f, X

Proof. Without loss of generality assume that ||f|lw = 1. Let y := tO(x), F := f" and
assume that the first inequality does not hold. Then, by (5.11),

1

| <
2V2d k(F, y)/1 + lIx|?

By (5.12), (5.10)and the regularity inequality (Proposition 1523), we get

IF(y)

1 - H Vif df (x)x (1 + ||x||2)
V2k(Fy) @+ IxI)972 @+ [Ix[12)97/2 vd |
We divide by Vd and use the triangle inequality to obtain
1 < IVl |7 (x) [l ]|

|
< - :
V2d k(F,y) — d(1+IIx|2)9270 0 (14 [Ix[12) @072 (14 x| 2

Using (5.11) and our initial assumption on the second term in the sum, which we sub-
tract, we get the desired inequality since || x|| < /1 + || x]|?. O

We note that the geometric interpretation of k¢ (f, x) was already discussed in detall

in Section 152. Because of that, we don’t repeat it.

Construction of Burr, Gao and Tsigaridas The construction of Burr, Gao and Tsi-
garidas is given by the following function:

271d/In (1+22727) + vn/2 2°"(d = 1)/In (1 +227%") + y/n/2
dist(x, ZC(f)) ’ dist((x, x), Z(gr))

C(f,x) := min{

where gy is the polynomial (V£ (X), VF(Y)).

Theorem 5529, [98; Corollaries 3.6 and 3.7] Assume that the interval approximation is as
in [98; Remark 2.2]. Then
x> 1/C(f,x)"

is a local size bound function for f. O

The main intuition behind C(f, x) is that its inverse tell us how near is the point x of
being a singular point of the complex zero set ZC(f) of . By the local condition number
theorem (Theorem 1529), the inverse of k¢ measures how near is £ of having a singular
zero at x, which seems like a Copernican inversion of the situation for C.

The following result allows us to control C by the means of k.
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Theorem 55210. [136; Theorem 6.5]. Let d > 1 and f € P4. Then, for all x € R”,
C(f,x) < 22"d*k.g(f, x).

Proof. Note that Corollary 5523 holds over the complex numbers as well. Due to this and
the fact that Z¢(f) = Z© (7?) we have that

‘F(x)’ < (14 Vd) dist (x, ZC(f)) .

Now, if V2(1 + Vd = 1) dist((y1, y»), (x HVf H then V2(1 + Vd - 1)||y; —
x| < ”w H Thus, by Corollary 5823, \/_HVf (yi) - VF(x )H < [VF(x)] and so, by
Lemma 5525, 0 # (V£ (y1), VF(y2)). Hence

HW(X)H < V2(1 + Vd = 1) dist(x, Z%(gr)).

The bound now follows from Proposition 5528, together with 23"V d + /n < 23724 and

27-1d vn  2%7(d -1) \/F 5 vn
. Ay - < 9 n—4d -
m'”{m 112229 2 ma+22 V32 M

for which we use that 1/In (1 + 2272") < 22" 3 and 1/In (1 + 2*7%") < 24773, m

Let us observe that one of the reasons to prefer k¢ over C is that the former is easier
to compute and it has better variation properties, as shown by the 1st and 2nd Lipschitz
properties (see Propositions 1524 and 1527).

Remark 55%4. The most remarkable fact is to show that the original quantity introduced by
Burr, Gao and Tsigaridas can be controlled by K. 9

Construction of Cucker, Ergiir and Tonelli-Cueto \We show now that one can
construct a local size bound directly from the condition number itself.

Theorem 55211. [136; Theorem 6.6] Assume that the interval approximation is as in The-
orem 5521. Then .
X1/ (25/2dm<aﬁ(f, x))

is a local size bound for f.

Proof. Let x € R". As, by Theorem 5524, C7(J) implies Cr(J), it is enough to compute the
minimum volume of J € Z, containing x such that C£(J) is false. This will still give a local
size function for f.

Since x € J, ||[x—m(J)|| £ Vnw(J)/2. Hence, by Corollary 5523 and Proposition 5528,

either
1

Fm()| 2 (144
Flmn] > S —=— TRl
or

|Vf (m( J))‘ ! — (14 Vd - 1)Vnw(J)/2

2V2 dKafff X
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This means that C7(J) is true if either
2V2d (1 + Vd)Vn kae(F, x)w(J) < 1 or 2V2d (1 + Vd — 1)nkag(f, x)w(J) < 1.

Hence we get that CZ(J) is true when both conditions are satisfied and the inequality 1 +
Vd < 2Vd finishes the proof. O

Worst-case complexity

If we assume our input to be integer polynomials, one can obtain the following worst-
case complexity bound. This result was the original bound by Burr, Gao and Tsigaridas that
is unable to explain the efficiency of the Plantinga-Vegter algorithm in practice.

Theorem 55212. [98; Theorem 4.3] The number of n-cubes in the final subdivision of
Algorithm PVSUBDIVISION on input (f, a), with f an integer polynomial with coefficients of
bit size at most T and a € N, is at most

20(nd"‘H (nt+ndlog (nd)+9n+d) log a)

if the interval approximation is as in [98; Remark 2.2]. O

Remark 5525. The current techniques are able to only bound SUPx¢[-a,4 C(f, X) for f an
integer polynomial, which is large whenever C(f, x) is large for some x. These techniques
cannot take advantage of quantities of the form f[_a,a],, C(f, x)" dx with f an integer poly-
nomial and a € N, which to be large need C(f, x) to be large for many x. q

Condition-based complexity

The following result is the first result in numerical real algebraic geometry where the
complexity bound depends on the average of the condition number. This is interesting as
this can be seen as a real analogue to the well-known Shub’s estimation on the number
of iterations for complex adaptive homotopy continuation [365]. In this way, the continu-
ous amortization of Burr, Krahmer and Yap [100, 97], from where the result below comes,
should be seen as not only as an important complexity analysis technique in the theory of
subdivisions methods, but as a fundamental technique for future algorithms in numerical real
algebraic geometry.

Theorem 55213, [136; Theorem 6.7]. The number of n-cubes in the final subdivision of
Algorithm PVSUBDIVISION on input (f, a) is at most

d" max{1, a"}2" 9 INIE, e (Kast(F, X))
if the interval approximation is as in Theorem 5521, and at most
d*" max{1,a"}2%" 2" E e _a.apn (Kate(F, X)")
if the interval approximation is as in [98;, Remark 2.2].

Proof. Thisis just Theorems 5527, 55210 and 55211 combined with the fact that the integral
f[_a,a]n Kare(f, x)" dx is just (2a)" Exe[-a,apn (Kase(f, X)"). O



552 Condition and Homology in Semialgebraic Geometry 189

Probabilistic complexity

The next two theorems fullfill the promise of the finite expected run-time of the PV Al-
gorithm. Theorem 55214 gives a bound in the average setting and Theorem 55215 in the
smoothed setting, introduced by Spielman and Teng [380]. We note that for fixed n, all the
bounds are polynomial in the degree d which explains the efficiency of the PV Algorithm in
practice. Also, the randomness model is that of dobro random polynomials, and so more
robust that the traditional setting with KSS random polynomials.

Theorem 55214. [136; Theorem 3.1]. Let f € P4 be a dobro random polynomial with
parameters K and p. The expected number of n-cubes in the final subdivision of Algo-
rithm PVSUBDIVISION on input (f, a) is at most

n%43n n?+16nlog(n)

d =z max{l,a"}2 2 ~H(Kp)™tt

if the interval approximation is as in Theorem 5521 and

7n%+49n log(n)

2450 nMo——s———-1 n+1
d 2 max{l,a"}2" = (Kp)
if the interval approximation is as in [98;, Remark 2.2].

Theorem 55215. [136; Theorem 3.2]. Let f € Py, 6 > 0, and | € P4 a dobro random
polynomial with parameters K and p . Then the expected number of n-cubes of the final
subdlivision of Algorithm PVSUBDIVISION for input (fs, a) where 5 := f + o||f||wf is at most

n?+43n n?+16n log(n)

2130 nMNo———s——-—1 n+1 1 r
d 2 max{l,a"}2 2 (Kp) 14+ —
c
the interval approximation is as in Theorem 5521 and
n2 n 7n2+9nlo (n) 1 n+l1
d= max{1,a"}2" 2 : ~H(Kp)™tt (1 + —)
o

if the interval approximation is as in [98; Remark 2.2].

The proof of the two theorems above is just an easy consequence of Theorem 55213
combined with the following theorem.

Theorem 55%16. (A) Let f € Hy be a dobro random polynomial with parameters K and
p. Then

2

2 (Kp)"*.

[Ef[Exe[—a,a]" (Kaff(f, X)n) <d

(S) Let f € Hy, 0 > 0, {5 := f + o||f|lwg be a random polynomial such that g € Hy[1]
is a dobro random polynomial with parameters K and p. Then for t > e,

n2+n  n?45n+3log(n)+12 n+1
ErExel-aar (Ka(fos X)) < d7727 2 (Kp)™"! (1+5) |
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Proof. (A) By the Fubini-Tonelli theorem,

[Ef[Exe[—a,a]" (Kaff<f9 X)n) = [EXE[—a,a]”[Ef (Kaff(f’ X)n)

so it is enough to have a uniform bound for

Er (kae(f, x)") = / P (kae(f, x)" > t) dt.

1

Now, by Theorem 55t3(A), this is bounded by

o ( 30KpVN

n(n+1)

n+1 n
/°° n(t)"= »
1 t1+1/n

After the change of variables t = e"° the integral becomes

0o n ~ . na3
n/ (ns) Te Sds—n;?)l“( 5 ),
0

where T" is Euler’s Gamma function. Using the Stirling estimates for it, we obtain

nt2 nt2
n+3 n+3\ 2 n—+3\ 2
r( : )gm( ;) 34( I)

e

and N < (2d)". Combining all these inequalities, we obtain the desired upper bound.
(S) As (A), but applying Theorem 5513(S) instead. m]

Remark 55%6. \We note again that an important improvement over [136] is that we give
explicit constants and no undetermined universal constants. 19

553 2nd adaptive case: Han’s covering algorithm

Around the same time that Cucker, Erglir and the author used the continuous amor-
tization of Burr, Krahmer and Yap [100, 97] to show that the complexity of an adaptive
algorithm in numerical real algebraic geometry could be controlled by Exesnk(f, x)", Han
(under the supervision of Lairez) [213, 214]" made a similar discovery. His motivation came
from a search for an adaptive version of the algorithms presented in Chapter 4. However,
Han didn’t considered the question of the probabilistic algorithm and his proposed covering
algorithm for homology computation had complexity proportional to Eesnk(f, x)*" which
does not have finite expectation®.

Han’s clear insight was to point out a fundamental property that we want a non-uniform
cover to have in adaptive grid/subdivision methods.

TWe warn the reader about the numerous mistakes of these references. This means that any statement can
be false beyond trivial corrections. See the footnote in Remark 3522 for an example of such a case.

2Despite it is claimed that the algorithm runs in time bounded by E ycsnk(f, x)”, [213, 214] contains an error
in the proof and the given bound is the correct one. Also, we note that, due to the footnote at Remark 3522, the
correctness of the algotithm is not yet proven.
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Definition 5531. Let (X, d) be a metric space, f : X — (0, 1] a Lipschitz function, C > 0
and B := {B(x,ryx) | x € G} a cover of X by closed balls. We say that B has the Han’s
(f,C)-property if for all x € G,

ry < C7HF(x). (5.15)

This property is very desirable, since it guarantees nice properties of the resulting adap-
tive subdivision/grid. This makes having a general algorithm to produce these covers an
important step towards general adaptive subdivision/grid methods.

We present here the main ideas of Han’s covering algorithm for the cube and the sphere.
As an application, we will show that these can be used for estimating the condition number
K(f) in expected single exponential time and expected parallel polynomial time with expected
single exponential number of processors.

First, we introduce Han’s covering algorithm in the cube; second, we apply it to the
sphere using a variation of the uniform grid; third and last, we use this to create an algorithm
to estimate k with finite expectation.

Han’s covering algorithm for the cube

Han’s covering algorithm in the cube follows a similar pattern to Algorithm PVSuB-
DIVISION. Based on this, we write Algorithm CuBICALHANCOVERING below. We focus our
complexity analysis on the size of the output subdivision.

Algorithm 11: CuBICALHANCOVERING
Input :f :[-a,a]” — (0,1)
a,C € (0, 00)
Precondition : f is L-Lipschitz with respect to the co-norm

S — {[-a.a)"}
S—o
repeat
Take Bin S
S <« S\ {B}
if w(B) < 2C~!f(m(B)) then
| S« Su{B}
else
t S« Su STANDARDSUBDIVISION(B)

until S = @
return S

Output : Subdivision S of [—a, a|
Postcondition: For every B € S, w(B) < 2C™1f(m(B)),
i.e., § has Han’s (f, C)-property with respect the co-norm
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Theorem 5531. Algorithm CUBICALHANCOVERING is correct. The number of n-cubes of the
final subdivision of Algorithm CuBICALHANCOVERING on input (f, a, C) is at most

max {a"(2C + 3L)" Exef-a,apf ()", 1} .

Moreover, if C > L, the number of n-cubes of any subdivision satisfying the postcondition
of Algorithm CuBICALHANCOVERING /s at least

an(C - L)n Exe[_a’a]nf(x)_n

For proving this theorem, we will use the following technical lemma which can be viewed
as the main tool of the continuous amortization of Burr, Krahmer and Yap [100].

Lemma 5532. Let (X, d) be a metric space, f : X — (0, 1] an L-Lipschitz map, C > 0,
x € Xand ry > 0. Assume that (x, ry) satisfies inequality (5.15) and that there is some
¥x € B(x,2ry) such that

2rc = CH (yy). (5.16)
Then for all z € B(x, ry),

r;t < (2C+3L)f(2)7 (5.17)

Proof of Theorem 5531. Note that the correctness is trivial, because f attains a global min-
imum in the compact set [—a, a]”. Let B, denote the ball of the co-norm and S the subdi-
vision obtained by Algorithm CuBICALHANCOVERING. Assume also that S # {[—a, a]"}.

By construction, for all B (x, ry) € S, we havethat r, < C™!(x), since w(Bu (X, ry)) =
2ry and x = m(Bw (X, ry)). Now, let Bo (yx, 2ry) be the parent box of Beo (X, ry), i.€.,

Beo(X, rx) € STANDARDSUBDIVISION (Beo (Yx» 27x))

with Eoo(yx, 2ry) appearing before in the execution of Algorithm CuBICALHANCOVERING. Since
Boo(¥x»2rx) € S, this means that the condition

W (Boo (X, 1x)) < 2 (M(Beo(yx: 2rx)))

did not hold. Thus 2ry > f(yx).
By the above, we are in the situation of Lemma 5532 for each EX,(X, ry) € 8. Hence
for all Beo (X, rx) € S, we have that

1= / (2ry)™"dz < 27"(2C + 3L)”/ f(z)""dz
Boo(X,7x)) Boo(X,rx))

by the inequality (5.17) of Lemma 5532. Therefore

1S— Y 1- Z /m) (2r,)"

Boo(X,rx)€S (x,rx)€
-n _/7 n -n
"(2C + 3L)" Z / dz = 27"(2C + 3L) / f(z)"dz,
(%,rx)) [-a,a]"
Beo (x,rx)€S

as desired.
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For the universal lower bound, note that for z € Bu(x, ry) With r, < C™'f(x), we have
that
1> (C-Lf(2)™"

due to Cry < f(x) < f(z) + Lry. Then one proves the claim analogously. O
Proof of Lemma 5%32. By the triangle inequality, for all z € §(x, ry),

2Cry > f(yx) = f(z) —Ld(yx,z) > f(z) - L(d(z,x) + d(x, yx)) = f(z) — 3Lry.
From here the claim follows. i

Remark 5531. Let us note that we could obtain in the upper bound 2(C + L) instead of
(2C+3L). However, we proceed as we do to show the underlying general principle illustrated
by Lemma 5532. 1

The following corollary is immediate.

Corollary 5533. Let f : [—a, a]" — (0, 1] have evaluation cost cost(f). Assume the oper-
ations with real numbers are constant cost. Then Algorithm CuBICALHANCOVERING on input
(f, a,C) has run-time bounded by

O (cost(f) max {a"(2C + 3L)" Exe[-a,an f (X) ™", 1}) .

Moreover, there is a parallel version of Algorithm CuBICALHANCOVERING, PARCUBICALHAN-
COVERING, whose parallel run-time is at most

O (cost(f) max {nlog(a(2C + 3L)) + log Exe[-aapnf (x)™",0})
= O (cost(f) max {nlog(a (2C+3L))+n[EXE[ 227 109(1/f(x)),0})

and whose required number of processors is at most
O (max{a"(2C + 3L)" Exe[-aapf (x)™",1}) . O

Remark 5532. We note that it would be possible to employ interval arithmetic, floating-point,
etc. to evaluate approximately f and obtain a round-off version of Algorithm CuBICALHAN-
COVERING. |

Han’s covering algorithm for the sphere

The original Han’s covering algorithm was for the sphere. However, the version pro-
posed by Han [214, 213] is non-constructive as it relies on the same construction employed
in the proof of Lemma 15220. We now give a constructive version, in which the grid can be
constructed efficiently (in practice). We note that this is non-trivial, since we cannot cover
the sphere with balls whose pairwise intersections have measure zero. However, we avoid
this issue at the cost of some optimality, by constructing Algorithm SPHERICALHANCOVERING
relying on Algorithm CuBICALHANCOVERING.

Recall the bijective map 1O : d[-1,1]"T! — S”, from (4. 20), given by x — x/||x||.

We note that Algorithm SPHERICALHANCOVERING is just like applying Algorithm CUBICAL-
HANCOVERING in the boundary of the cube d[—1, 1]"*! and then projecting it onto the sphere.
Recall also that for each facet F of d[—1, 1]"**, the map 6|F is 1-Lipschitz. With all this in
mind, we prove the following theorem.
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Algorithm 12: SPHERICALHANCOVERING
Input :f:S" — (0,1]
C € (0, )
Precondition : f is L-Lipschitz with respect to the geodesic distance dists

A —10 ((224%'09”1 + 1) N o[-1, 1]”+1) x {1}
A — @
repeat
Take (x, ry) in A
A — AN\A{(x, rx)}
if r, < C7!f(x) then
| A= AU{(x 0}
else
i —argmax{|x;| | i€{0,...,n}}
X «— x/|xj|

A—dA U@({(i e L P 3) | o/{-1, 1}})

until A = @
return A

Output tACS"x(0,1/3]
Postcondition: {B(x, ry) | (x,rx) € A} has Han’s (f, C)-property

Theorem 5534. Algorithm SPHERICALHANCOVERING /s correct. The number of n-cubes of
the final subdivision of Algorithm SPHERICALHANCOVERING on input (f, C) is at most

n n —_— —-n
max {21+”n1+§, 9018 (4C + 3L)" Exeoprynf (m(x)) } .

Proof. We note that f o O is v/nL-Lipschitz with respect to the co-norm in each facet. Since
we are starting not with d[—1, 1]” or its facets, but with LN pl+5 initial cubes, we should
account for this, which is done in the first term of the maximum. For the other term, we apply
Theorem 5531 to each of these initial n-cubes and then we apply the additive property of
integrals. Just note that instead of (C, L), we should substitute (2|—%'°9 n] G, \/EL) For the
correctness, note that

Boo (L ry2 1310 ”1) cB (L rx)
111

lIxl
implies that the final subdivision gives the desired covering. O
We now translate the above theorem into a proper statement over the sphere.

Theorem 5535. Algorithm SPHERICALHANCOVERING is correct. The number of n-cubes of
the final subdivision of Algorithm SPHERICALHANCOVERING on input (f, C) is at most

max {21+"n1+%, 2(n +1)"1(4C + 3L)" [Exegnf(x)_”} ,
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Moreover, if C > L, the number of balls of any covering satisfying the postcondition of
Algorithm SPHERICALHANCOVERING /s at least

2Vn(C = L)" Exesnf (x)™".

Remark 5533. We note that an upper bound for the size of the covering produced by Al-
gorithm SPHERICALHANCOVERING is exponential in O(nlog n), while the lower bound for a
covering satisfying the same property is exponential in O(n). The reason for this is the same
as for why this happens with the uniform grid. There is a loss at covering the sphere by
covering the cube. q

We recall the following easy consequence of [87; 2.37], which gives an estimation of
the volume of a n-ball.

Lemma 5536. Let r € [0,1/2] and x € S". Then
0.9w, r" < wpsin” r <vol,(Bs(x,r)) < w, r" (5.18)
where w, is the volume of the n-dimensional ball B(0, 1). O

Proof of Theorem 5535. For the upper bound, we only need to apply the change of variables
theorem on each facet F of 9[—1, 1]”“. Without loss of generality, let F = 1 x [-1, 1]". Now,
by a straightforward computation, for x € {1} x R” and v € 0 x S"°!,

5 1 ~
. X
DitOv = x|l \v = xv)(x—eo) |

X1

and therefore

ID«tO V|| =

Vx| - (xv)? [\/le—eoIHIIXII2 1 ]

l1x11? [1x11? lxll

This implies that

VIXIP + llx = eoll 1
2 ,
x|+ X117

)det DXE) _

and so that

/XEF f(HO(x))™"dx < /}/G@(F) fly)"

Hence the upper bound follows.

The proof of the universal lower bound is analogous to the proof of the lower bound
in Theorem 5531. We only need to use the estimation in Lemma 5536 to lower bound 1 by
w,! /Bs (o r," and some inequalities between volumes of Euclidean balls. O

0 (y)

n n
dys/ fly)"(n+1)2dy.
y€lO(F)

Corollary 5537. Let f : [-a, a]" — (0, 1] have evaluation cost cost(f). Assume the opera-
tions with real numbers are constant cost. Then Algorithm SPHERICALHANCOVERING on input
(f, C) has run-time bounded by

o) (oost(f) max {21+”n1+§, 2(n +1)"(4C + 3L)" [EXGS"f(X)_n}) .
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Moreover, there is a parallel version of Algorithm SPHERICALHANCOVERING, PARSPHERICAL-
HANCOVERING, whose parallel run-time is at most

O (cost(f) max{nlog((n + 1)(4C + 3L)) + log Exes~f (x)™", nlog n})
= O (cost(f)max {nlog((n 4+ 1)(4C + 3L)) + n Exesn log(1/f(x)), nlog n})

and whose required number of processors is at most
0 (max {21+"n1+%, 2(n +1)"1(4C + 3L)" [Exegnf(x)_”}) : o
Remark 5534. As with Algorithm CuBICALHANCOVERING, the same notions regarding round-

off versions applies to Algorithm SPHERICALHANCOVERING. |

Fast estimation of k() and k(1)

One important application of the coverings obtained by Han’s covering algorithms is
that they allow us to compute very fast the minimum of a Lipschitz function f : X — (0, 1],
which was one of the main motivations of Han’s work [213, 214]. Now, by the 2nd Lipschitz
property (Proposition 1533), the map

S" s x K(f,x) !t el0,1]
is D-Lipschitz with respect to the geodesic distance dists.
Lemma 5538. [213]. Let (X, d) be a metric space, f : X — (0, 1] an L-Lipschitz map,
C>0and B = {B(x,ry) | x € G} acoverof X. If B has Han’s (f, C)-property, then

(1 - %) min f(x) < minf(x) < min f(x).

XEG xeX xeG

Proof. Since f is L-Lipschitz, forall x € G and all z € E(X, ry),
L
f(z) > f(x)—Lry > f(x) = LC'f(x) = (1 - 6) f(x),

by inequality (5.15). The claim is now obvious. m|

In view of the above, we propose Algorithm k-FASTESTIMATE that is a variation of Algo-
rithm k-ESTIMATE using Han’s covering algorithm. We note that one can modify Algorithm k-
FASTESTIMATE to allow the algorithm to stop when the condition number is bigger than a
certain threshold B > 0.

Theorem 5539. Algorithm K-FASTESTIMATE is correct. Its run-time on input (f, p) is bounded
by
o) ((N + %) max {2”n1+§, (n+1)™L(7D + 1)" Exes¥(f, x)"}) .

Further, this algorithm admits a parallel version, k-FASTPARESTIMATE, whose parallel run-time
is bounded by parallel run-time is at most

O ((N + n*)max {nlog((n + 1)(7D + 1)) + log Exes"K(f, x)", nlog n})
and whose required number of processors is at most

0 (max {21+”n1+%, 2(n +1)" (7D + 1)" Exesr&(F, x)"}) .
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Proof. Correctness follows from Lemma 5538. For the complexity estimates, use Theo-
rem 5535, Corollary 5537, for the size complexity of Algorithm SPHERICALHANCOVERING,
and [272; Lemma 25], for the complexity of evaluation of k(f, x) as we did in the proof
of Theorem 4528, m|

The following is the most important result.

Theorem 55310. Let f € Hy[q] be a KSS random polynomial tuple. Then the expected
run-time of Algorithm K-FASTESTIMATE on input f is bounded by

O ((N+ n")n*q™ (7D + 1"(119nN) ") = (gnDN)2',

and the expected parallel run-time and number of processors of Algorithm k-FASTPARESTIMATE
are bounded, respectively, by

O (n(N + n®)log(gnDN))

and by

o (”2qn+1(7D + 1)”(119nN)n;1) = (gnDN)°™.

For fo := f + o||f|lwf, the same bounds hold with an additional factor (1 + é)nﬂ.
Proof. The proof is as that of Theorem 55216, a simple application of the Fubini-Tonelli
theorem. For this, we have to use the tail bounds from Proposition 1536. O

Making a variation of the above, we can apply the same strategy to K. The idea is to
bound, on the one hand, K(p"), and, on the other hand, Ko (p), see (1. 36).

Theorem 55311. There is an algorithm, Kag-FASTESTIMATE, which admits a parallel version,
Kar-FASTPARESTIMATE, that for p € Pqlq] and p € (0, 1), computes a positive number such
that K < X,e(p) < (1 — p) ™K. For these algorithms, the following hold. Let | € Hg[q] be a
KSS random polynomial tuple. Then the expected run-time of Algorithm K,e-FASTESTIMATE
on input § is bounded by

0 ((N + mP)n2g™ (7D + 1)"(119nN)”§1) _ (gnDN)O),

Algorithm 13: k-FASTESTIMATE
Input 1 f € Hylq|

pe(0,1)

A «—SPHERICALHANCOVERING(K(F, x)™1,Dp 1)
Ke(1- p)‘l max{K(f'—, X)|(x,ry) € A, L€ [q]£n+1}

Output :K € (0,00)
Postcondition: k() < K < (1 — p)7'k(f)
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and the expected parallel run-time and number of processors of Algorithm K ,s~FASTPARESTIMATE
are bounded, respectively, by

O (n(N + n®)log(gnDN))

db
e 2 n+1 n ol O(n)
O(n g™ (7D + 1)"(119nN) "5 ): (gnDN)°(™.

For fo := f + o||f|lwf, the same bounds holds with an additional factor (1 + é)"“.
Proof. We use Algorithm K-FASTESTIMATE to bound k(f") and Ky¢(p). For the first, the
bound is as above; for the latter, we should use the tail bound of Corollary 1547. m|

An interesting consequence of these two results is the following one, which we state
without details.

Theorem 55312. There is an algorithm that computes a positive lower bound of the reach
of a spherical smooth algebraic set in finite average time that is singly exponential time in the
number of variables and polynomial in the degree and number of polynomials.

Proof. We have to use the bound of Theorem 3525 together with the higher derivative esti-
mate (Theorem 15212). O

554 A nammneTtka® for the future

We now present our ambitious research program natunetka. The program will be di-
vided in five parts. The main focus of this program is the development of an algorithm com-
puting homology of semialgebraic sets in average singly exponential time and its application
to a computational approach to classification problems in real algebraic geometry.

554—1 Martunetka |: Homology in average singly exponential time

With the development of the main results of this thesis in Chapter 4, the old non-adaptive
grid method achieved a milestone. In this setting, there are problems related to quantified for-
mulas that the author currently works in. However, the development of the condition-based
complexity analysis of the PV Algorithm together with a finite bound for the expectation
in [136] (Section 55%) was a completely unexpected result.

This result suggests the following major problem of the program.

Pyatiletka problem 1I.A. Find a numerical algorithm computing the homology groups of
semialgebraic sets that, for a KSS random polynomial tuple p € Pq[q| and a Boolean formula
o of size s, runs in expected s(an)”O(l)—t/me.

Pyatiletka problem I.B. Find a numerical parallel algorithm computing the homology groups
of semialgebraic sets that, for a KSS random polynomial tuple » € Pq[q] and a Boolean

formula ® of size s, runs in expected s(qgnD)°M with s(qnD)™"" expected number of
Processors.

SFive-year plan.
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We note that as of today the above two problems remain unsolved even in the case of
counting zeros. This forces us to pose the following problem.

Pyatiletka problem I1.A. Find a numerical algorithm computing counting the zeros of an
algebraic set that, for a KSS random polynomial tuple v € Pq[n|, runs in expected (nD)"O(U -
time.

Pyatiletka problem 1I.B. find a numerical parallel algorithm counting the zeros of an al-
gebraic set that, for a KSS random polynomial tuple p € Pq[n], runs in expected parallel
(nD)°W-time with (nD)"°"" expected number of processors.

In any of the above problems, Algorithms PVSuUBDIVISION and SPHERICALHANCOVERING
can provide subdivisions with very good properties. Unfortunately, it is not clear how to use
such properties in order to obtain a topological reconstruction, which is similar to the situation
with the PV Algorithm, see Open problem I in Section 552,

5542 Matunetka ll: A condition number for adaptive algorithms

In adaptive subdivisions methods, a new condition-based quantity appears:
Exesnk(f, x)". (5.19)

The main difference with the usual maximum-based quantity k(f) is that this quantity has
finite expectation, by Theorem 15217. However, let us note that for a KSS random polynomial
f e Hyll],

Exesnk(f, x)* (5.20)

is finite if and only if & < n + 1, due to Corollary 55110. We note that this is the main
difficulty towards the solution of Pyatiletka problems I and 11, since following the usual
recipe (assuming everything works) gives an algorithm whose complexity is controlled by

Exesnk(f, x)*" (5.21)

which we expect to be infinite.
We note that the condition-based quantity (5.19) is still to be understood, and it will
play a fundamental role in the understanding of subdivisions.

Pyatiletka problem II1I. Develop a condition-based complexity theory for adaptive sub-
division/grid methods. More concretely, analyze as many adaptive subdivisions methods as
possible using condition-based quantities of the form (5.19).

This will lead to many probabilistic analysis of existing algorithm and will explain the suc-
cess of adaptive subdivision problems in solving problems, like it did with the PV Algorithm.
Among the possible candidates for this are the algorithms of Xu and Yap [420]%, and Jin
and Cheng [237, 238]. It is clear that these analysis might not only help to solve the Py-
atiletka problem II1, but also the Pyatiletka problems I and I as they will probably allow
the exploration of new ideas of how to exploit good subdivisions.

4The author is currently working in this analysis [391].
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Also, let us note that (5.19) is infinite if and only if k(f) is so. However, we can take
the derivative of (5.19) with respect to f, since expectations and derivatives commute. The
latter suggest a purely metric approach to classifying isotopy types in the complement of the
discriminant.

Pyatiletka problem 1v. Compute the derivative of (5.19) with respect to f. Can this be
used to develop homotopy preprocessing algorithms in numerical real algebraic geometry?
And for studying the number of rigid isotopy types of a smooth algebraic set?

Since k(f, x) is a metrical quantity in nature, the above would lead to the creation of
a metric algebraic geometry, where the properties of algebraic sets are studied through the
study of the distance and other metric properties.

554-3 Matunetka lll: Robust probabilistic framework

Another important development in [136] (Section 55%), following the work of Ergir,
Paouris and Rojas [175, 176], was the development of bounds for the more general class of
dobro random polynomials. Unfortunately, the bounds are not for dobro polynomial tuples.
This motivates the following question.

Pyatiletka problem v. Let f € Hy[q] be a dobro random polynomial tuple and x € S”.
Obtain tail bounds for «(f, x) like those in Theorem 15217.

There are other possible ways to proceed. It is clear that the techniques from geometric
functional analysis are more versatile. This means that they work with more norms than just
norms coming from an Euclidean product. In this respect, we propose the following problem.

Pyatiletka problem vI. Explore how replacing the Weyl norm of Hgy[q] (and Pq[q]) by a
different norm affects the complexity of numerical algorithms.

One can see that as long as a norm allows us to control evaluations and derivatives,
one should be able to obtain a version of the exclusion lemma, the 1st and 2nd Lipschitz
properties and the higher derivative estimate for the corresponding condition number. In this
aspect, there are two kinds of norms that one consider: functional norms in the space that
the algorithm works in and p-norms of the coefficients of the polynomials.

For functional norms, there are some early results in work of Cucker, Ergir and the
author [137] that shows that one gets significant improvements in the exponents that appear
in the complexity analysis®. For p-norms of coefficients of polynomials, the author [390] has
preliminary results showing that it is possible to eliminate the scaling of the coefficients in the
random model.

An additional problem, which is completely unexplored, is the following one.

Pyatiletka problem vIzI. Let f € Hy[q] be a random polynomial tuple distributed accord-
ing to some discrete probability law and x € S". Can we say something in general about
the tail bounds for k(f, x)?

SWhere significant means that exponents that are of the form O(n?) become of the form O(n).
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The above problem could lead to a development to hybrid symbolic-numerical algo-
rithms that run in average singly exponential time and worst-case doubly exponential for a
random integer polynomial tuple. We pose this as a problem.

Pyatiletka problem VIII. Find a hybrid symbolic-numerical algorithm computing the ho-
mology of semialgebraic sets that, for p € Pqlq| with random integer coefficients i.i.d. on
[—2°, 28] and a Boolean formula @ of size s, runs in expected s(gnD)™*" 200 _time and

20<">20(b)

worst s(qnD) -time.

55%—4 MatuneTka IV: Real algorithms

In one of his famous criticisms to non-constructive mathematics, Bishop [Q2] claimed
that “classical mathematics concerns itself with operations that can be carried out by God”
while constructive mathematics concerns itself with “operations that can be carried out by
finite beings, man’s mathematics for short”. As of today, the status of Bishop’s “man’s math-
ematics” can be seen that is properly realized in the numerous constructive algorithms of
real algebraic geometry, which are beautifully described by Basu, Pollack and Roy in their
book [34].

However, in the current computational world, we cannot conform ourselves with algo-
rithms that are good in theory, but that no one has seen them work. Making fun of Bishop’s
discourse [Q2], who cares about the operations that finite beings that live thousands of years
can do? As life is short, the following problem is very important.

Pyatiletka problem IX. /f existing, can the algorithm of the Pyatiletka problems I, II
and VII be implement in practice so that they can be run in a computer?

One might expect that numerical algorithms have a better chance of being efficient in
practice, but the author has a certain bias. A project of interet is the following one.

Pyatiletka problem x. Can any of the Algorithms k-ESTIMATE, SPHERICALHOMOLOGY, AF-
FINEHOMOLOGY, CuBICALHANCOVERING and their variants across this thesis be implement in
practice so that it can be run in a computer?

An important tool for this last Pyatiletka problem could be the C++ code Ripser by
Bauer [44], which allows for fast computation of the homology of Vietoris-Rips complexes.

554—5 MatuneTka V: Computational Hilbert 16th problem

Coming back to the introduction, we consider the understanding of the topology of real
algebraic and semialgebraic sets as one of the motivations of computational semialgebraic
geometry. The most general way in which an algebraic geometer understands a classifica-
tion problem is by having an explicit list of objects’ types and a list of invariants that when
computed indicates to which type in the list is the studied object equivalent. We general-
ize this notion to the computational setting. Although the definition below is only for isotopy
types of hypersurfaces, it can be extended to more general settings easily.

Definition 5541. A computational classification of the isotopy type of hypersufaces consists
of the following three computable maps:
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(c) Amap
class : NXN — {ACR[X¢ | Kk e N] | #A < o0}

degf = d} contains a representative of each isotopy class of real hypersurfaces of
degree d in n + 1 homogeneous variables.

such that for each (d, n), class(d,n) € R[Xp,...,Xplg = {f € R[Xo,...,Xn] |

(il Amap
iden : U{d} X {n} X RXo, ..., Xn]d = R[X¢ | k €N
d,n

such that forall d,n € Nand f € R[Xo,...,Xy]q, iden(d, n, f) € class(d, n) with f
and iden(f) having the same isotopy type.

A computational weak classification of the isotopy types of hypersufaces of the following
three computable maps:

(c) Amap
class : NXN — {ACR[X¢ | Kk e N] | #A < oo}

such that for each (d, n), class(d,n) € R[Xo,...,Xsla := {f € R[Xp,...,Xp] |

deg f = d} contains a representative of each isotopy class of real hypersurfaces of
degree d in n + 1 homogeneous variables.

(d) Amap

comp : |_J{d} x {n} X RXo, ..., Xnla X R[Xo, .. ., Xalg — {0, 1}
d,n

suchthatforalld,n e Nand f, g € R[Xo,...,Xp|q, comp(d,n,f,g) =1iff fand g
have the same isotopy type.

We should see that we are not interested in having the list anymore, but in just being
able to produce the list and indicate the equivalent element in the list that can be produced.
In other words, asking about the existence of efficient computational classifications is the
same as wondering about the existence of systematic classification techniques for topology
in real algebraic geometry.

In the case of curves, Orevkov and Kharmalov [307] prove that the number of isotopy
types is

26(d?)

For hypersurfaces (and even more general sets), Basu and Vorobjov [41] showed that the
number of homotopy types is bounded by

NONM) _ 4O(d")
Based on this, we conjecture the following problem.

Pyatiletka problem X1I. /s there a (weak) computational classification of the isotopy type of
hypersufaces such that class can be computed in 29°" _time? And in parallel d O(n)_time?



554 Condition and Homology in Semialgebraic Geometry 2083

Remark 5541. We note that the statement of the problem does not contradict the results of
Diatta and Lerario [153], since they prove that certain curves are exponentially rare, but this
is expected from the number of isotopy types. 19

However, the real dream is the following Pyatiletka problem.

Pyatiletka problem XII. /s there a (weak) computational classification of the isotopy type
of hypersufaces that can be efficiently implemented in practice to classify currently unknown
cases until now?

An additional side quest of interest, given how little is known about algebraic curves in
3-dmensional space (see [410, 403, 402]) is the following problem, which might be easier
than the two previous ones.

Pyatiletka problem XIII. Find an algorithm computing the knot group of algebraic curves
in S? that, for a KSS random polynomial tuple T € Hgy(2], has run-time polynomial in D.

Of course the lMNatuneTtka program is ambitious, and most likely many of its goals will
not be achieved. But when one ventures to look into the future, one should do it with the
biggest possible ambition. The circumstances that might come may destroy our program,
but for now, let me just say:

MaTuneTka B YeTbipe rogal®

Further comments

Most of the exposition of Sections 55 and 552 is from [136]. The main exceptions
are the computation of the probability tail for the local condition number of a KSS random
polynomial and the exact constants in our probabilistic estimates. Regarding Han’s covering
algorithm, we followed the ideas in [213, 214], but many of the results and exposition in the
corresponding section are novel.

SFive-year plan in four years!
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My fuzzy mathematical idea was as follows:
“We know that poly-nomials (MHoro-4seHbl) have a lot of (i.e. MmHoro) roots, so probably
few-nomials (mano-4seHbl) have only a few (i.e. mano) roots”.

Anatoli G. Kushnirenko, Letter to Professor Sottile

Real zeros of random fewnomials

Afewnomial is a polynomial with few terms. A fewnomial system with t exponent vectors
is a polynomial system of equations

i =0

f, =0

for which there is a subset A C Z" of size t such that the system f is supported on A, i.e.,
each polynomial f; is of the form
fii= ) fiaX®.

aeA
In the complex case (see Theorem F§11), the number of complex zeros in (C*)" of a generic'
complex fewnomial system supported on A is n!vol, conv(A). In the real case (see Theo-
rem FS'5 and FS'6), the number of positive zeros? of a generic real fewnomial system can
be bounded only in terms of ¢t and n, independently of the set A on which the system is
supported. This showcases the radical difference in behaviour between real and complex
Zeros.

Example FS°1. Consider the polynomial aX? + b. Its generic complex form has d non-zero
complex roots, but its real generic form has at most one positive root. A

Example FS°2. Consider the fewnomial system with 4 exponent vectors
o + B1X + Y1Y + 61XYZd =0

Ay + BaX + Yo + 8:XYZ9 = 0
a3 + B3X+ Y3Y + 63XYZd =0.

in what follows ‘generic’ just means that the statement is true for all systems whose tuple of coefficients lies
outside the zero set of some polynomial in t variables. It can also be interpreted in the weaker sense of measure
theory, where the statement is true outside a set of measure zero with respect to the Lebesgue measure.

2By a positive zero x € R”, we will mean a zero in the positive orthant Ri.
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We observe that the set Ay := {0, ey, €2, (1, 1, d)'} on which this system is supported is
a simplex of volume d/6 and which does not contain any other integer points in its convex
hull. Despite not having integer points different from the vertices, the same phenomenon
happens. The complex generic system has d complex zeros in (C*)3, while the real generic
system has at most one positive zero. A

As of today, the following is the biggest open question in fewnomial theory. Recall that
a nondegenerate zero of a system f is a zero x of f such that D, is invertible.

Open problem J (Kushnirenko’s conjecture). [268]. Does the number of nondegenerate
positive solutions of a real fewnomial system with t exponent vectors and n variables have
a bound of the form poly(t)P°Y(")? In orther words, can we bound the number of nonde-
generate zeros of a real fewnomial system by a function that is polynomial in the number of
exponent vectors t and exponential in the number of variables n?

This appendix presents the work of the author in [93] together with Peter Blirgisser
and Alperen A. Erglr: a positive answer to the Open Problem J for random real fewnomial
systems (Theorems FS31 and F$35). This result can be considered as the first step in the
creation of a real random fewnomial theory.

First, we present the history and state-of-the-art in fewnomial theory; second, we intro-
duce random real algebraic geometry and we present the techniques that we will be using;
third, we state, discuss and prove the main probabilistic bound (Theorem F531), providing
also a slightly better bound for a restricted univariate bound (Theorem FS35); and fourth
and last, we provide a list of questions pointing into possible future directions of random
fewnomial theory.

Remark FS°1. We note that despite their theoretical appeal, fewnomial systems appear very
often in applications where dense polynomials are rare. Examples of these applications are,
among many others, chemical reaction networks [130, 227, 296, 309, 310, 189] (see [156]
for a survey) and statistics [159, 314]. |

St A history of real fewnomial theory

In 1975, Kushnirenko [269, 271]° proved the first theorem counting the number of
complex zeros of a complex fewnomial system. The importance of this bound is that in
general it is a lot better than the one obtained by Bézout’s theorem.

Theorem FS'1 (Kushnirenko’s theorem). [378; Theorems 1.1] Let f be a complex fewno-
mial system supported on A C Z". Then the number of non-degenerate complex zeros of f
in (C*)" is at most n!vol, conv(A). Moreover, for a generic complex fewnomial system the
number of complex zeros of f in (C*)" is exactly n!vol, conv(A). O

The next year, in 1976, Bernstein [51] extended this result to the case in which each
polynomial of the system is supported on a different set. Recall that the mixed volume of

SWe note that a purely analytic proof can be found in [270]. This proof applies to the more general sums
of exponentials. Although Kushnirenko planned to publish this paper in the journal Inventiones mathematicae,
he was not allowed by USSR authorities to do so. After that he became “upset and never trfijed to publish that
paper again at home or abroad” [268].
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convex polytopes Ky, ...,K, € R”, mixvol,(Ky,...,K,), is the coefficient of X; - - - X, in
the n-homogeneous polynomial

VOln (XlKl + XnKn)

or, equivalently,
n

mixvol,,(Kl, RN Kn) = m vol, (XlKl + - XnKn) .
1 n

Note that n!vol,(K) = mixvol, (K, ..., K).

Theorem F$12 (Bernstein’s theorem). [378; Theorem 1.2] Let f be a complex fewnomial
system such that each f; is supported on A; € Z". Then the number of non-degenerate

complex zeros of f in (C*)" is at most mixvol, (conv(A;), . ..,conv(A,)). Moreover, for a
generic complex fewnomial system the number of complex zeros of f in (C*)" is exactly
mixvol, (conv(Ay), . .., conv(Ay)). m]

Later that same year, Berstein, Kushnirenko and Khovanskii would provide further in-
sight in the proof of this theorem [52]. Because of this, the above results are known collec-
tively as the BKK theorem.

FS1—1 A fuzzy idea of Kushnirenko

In this moment of history, at the zenith of complex fewnomial theory, during the Summer
of 1977, Kushnirenko had a fuzzy idea while he was writing a paper for the journal KeaHT for
high school students of the Soviet Union. This fuzzy idea, which we quoted at the beginning
of this chapter, was as follows:

“We know that poly-nomials (MHoro-4neHbl) have a lot of (i.e. MHOrO) root,
so probably few-nomials (Mano-4nexbl) have only a few (i.e. mano) roots”.

This idea is nothing more than a language game in Russian, where Kushnirenko substituted
the Russian term ‘mMHoOro’ which means ‘many’ by its Russian opposite term ‘mano’ which
means ‘few’. This is also the way that the term ‘fewnomial’ was born, since Kushnirenko
just applied the same linguistic logic to English, substituting ‘poly’, meaning ‘many’, by its
opposite ‘few’.

After having this idea, Kushnirenko realized quickly that the number of roots is “nothing
but a characteristic of [the] topological complexity” and that the number of terms is “a char-
acteristic of [the] algebraic complexity” [268]. Based on this, Kushnirenko formulated three
conjectures® that would lead to the creation of real fewnomial theory: [268]

Kushnirenko Hypothesis |. The topological complexity of an object defined by real-
valued polynomials can be controlled by the complexity of the description of these

4Although the term in English is ‘conjecture’, Russian-speaking mathematicians usually use the term ‘hypoth-
esis’ which is just a literal translation of the Russian term ‘runotesa’. Despite this literal translation, this term is
the equivalent term to ‘conjecture’ in the Russian mathematical language.
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polynomials® (such as the number of non-zero terms or the size of a straight-line pro-
gram computing the polynomial) rather than by the degree or some other characteristic
of polytopes that the polynomials are supported on.

Kushnirenko Hypothesis Il. The number of hondegenerate positive zeros of a real
fewnomial system can be bounded from above by a function depending only on the
number of variables n and the number of exponent vectors t of the system.

Kushnirenko Hypothesis Ill. Given a fewnomial system f in n variables such that
each f; has at most t; terms, the number of nondegenerate positive zeros of f is at
most [17_,(t; — 1). In particular, a fewnomial system f in n variables with ¢ exponent
vectors has at most (t — 1)” nondegenerate positive real zeros.

FS1-2 Towards Kushnirenko hypotheses

At the moment that Kushnirenko coined the term fewnomial and formulated his con-
jectures, he didn’t have any evidence that this would effectively be the case beyond the
so-called Descartes’ rule of signs.

Theorem FS13. (Descartes’ rule of signs) [151; p. 42] and [2]. Let
f=a X% - 4 g X"

be a non-zero fewnomial where oy < ... < o Then the number of positive roots of f is
bounded by the number of sign changes in the sequence (as, . . ., az). In particular, f has
at most t — 1 positive roots. |

Because of this, when Kushnirenko talked to Arnold at the next day of coming up with his
three conjectures, Arnold advised Kushnirenko to “try to state and prove some simple partial
case” [268]. Kushnirenko would come up with the following simplest case of his conjectures.

Kushnirenko Hypothesis IV. Let f € R[X, Y] be a fewnomial with at most ¢ terms
and g € R[X, Y] a polynomial of degree at most D. Then the number of nondegenerate
positive zeros of the system
f(x,y)=0
{ g(x,y)=0
is at most b(t, D) for some universal function b.

In the fall of 1977, during one of their regular dicussions, Kushnirenko discussed the above
conjectures with the then 22-years-old mathematician Konstantin A. Sevastyanov (KoHc-
TaHTVH A. CeBacTbsiHOB), who was a PhD student of Arnold. Half a year later, in the Winter
of 1978, Sevastyanov was able to prove Kushnirenko Hypothesis IV and to disprove the
Kushnirenko Hypothesis Il

Theorem F5'4 (Sevastyanov’s theorem). Kushnirenko Hypothesis Il is false, and IV is
true. 0

SWhen Kushnirenko formulated his conjectures, he meant not only polynomials with integer exponent vectors,
but with arbitrary real exponent vectors.
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This is the “first crucial step” in real fewnomial theory [268]. Unfortunately, a few years
later, Sevastyanov died in a tragic car-pedestrian accident in which the driver left the scene
unidentified [268]. Because of this, the original counterexample and proof of Sevastyanov
are lost to history.

We should note that Open Problem J is a robust version of Kushnirenko Hypothesis lIl.
This version has not been disproved yet. A counterexample to the original Kushnirenko Hy-
pothesis Il was found independently much time later by Haas [212], but it is not a coun-
terexample to the robust version.

Motivated by the original work of Sevastyanov, Khovanskii [256] would prove Kush-
nirenko Hypothesis Il with an explicit upper bound.

Theorem FS'5 (Khovanskil’s theorem). [257; §3.714, Corollary 4]. Let f be a fewnomial
system in n variables with t exponent vectors. Then the number of nondegenerate positive
zeros of f is bounded by

t—1

2(3) (n 4 1)L,

O

Continuing this line of results, Khovanskii proved several more results covering also
Kushnirenko Hypothesis |, with a bound similar to the one above for the sum of Betti num-
bers. All these results came together in Khovanski’'s book Fewnomials [257] in 1991, which
would be later translated to Russian [258].

At this moment the theory of real fewnomials was a consolidated and established theory.
This theory had and still has two major challenges: the Open Problem J and developing a
multivariate generalization of Descartes’ rule. These two problems have been and are the
driving force of the real fewnomial theory.

FS1-3 After Khovanskii’s Fewnomials

We will divide history here in three parts: the first one, for the work related to Open
Problem J; the second one, for the work related to Sevastyanov’s theorem (known before
as Kushnirenko Hypothesis IV); and the third and last one, for the multivariate generalization
of Descartes’ rule of signs.

Approaching Kushnirenko Hypothesis Il

In 2002, Haas [212] gave a counterxample to Kushnirenko Hypothesis Ill by providing
a pair of bivariate trinomials® whose system had 5 nondegenerate positive zeros. We note
that Kusnirenko Hypothesis IlI’'s bound is 4. A year later, in 2003, Li, Rojas and Wang [277]
showed that 5 is a bound for the number of nondegenerate positive zeros of such a bivariate
trinomial system.

Later work has focused mainly on fewnomial systems in n variables with n 4+ k expo-
nent vectors, where k is assumed to be constant. In 2006, Bertrand, Bihan and Sottile [53]
provided non-trivial bounds for a restricted class of fewnomial systems when k = 2. Next
year, Bihan [56] obtained a tight bound for the general case of kK = 2.

BA trinomial is a fewnomial with three terms.



210 Josué Tonelli-Cueto FSt

However, the biggest result in this direction was an improvement of Khovanskii’s bound
(Theorem FS$5) by Bihan and Sottile [63]. We observe that under the above assumption of
t = n + k, for fixed k, the obtained bound is polynomial in n.

Theorem F$! 6 (Bihan-Sottile theorem). [63]. Let f be a fewnomial system in n variables
with t exponent vectors. Then the number of nondegenerate positive zeros of f is bounded
by
e’ +3
4

t—n-1 )

2l

nt—n—l.

O

In the late 2000s, Bihan, Rojas and Sottile [61] generalized this bound to the number
of connected components of a fewnomial hypersurface, and, later, Bihan and Sottile [64] to
the sum of Betti numbers of such a hypersurface. In the 2010s, Bihan and Sottile [65] further
generalized and significantly improved their bound by restricting their attention to a special
class of structured fewnomial systems. More concretely, the class that they considered is
formed by fewnomials such that the only common exponent vector to all of them is the
exponent vector of the constant term.

Phillipson and Rojas [313] further studied the existing lower bound on the maximum
number of positive roots and considered generalizations to the p-adic case. The latter con-
tinues a long sequence of work in p-adic and local fields fewnomial theory by Lenstra [276],
Poonen [319], [338], Rojas [339], Avendafio and Ibrahim [17, 18], and Avendano and
Krick [19].

Bihan [57] classified maximal fewnomial systems in n variables with n + 2 exponent
vectors, where a maximally positive fewnomial system is a fewnomial system with maximum
number of positive roots among the fewnomial systems with the number of exponent vectors.
Based on this classification, Bihan [57] proposed a conjecture about maximally positive
fewnomial systems.

Recently, in 2018, there has been some progress in obtaining new lower bounds by Bi-
han, Santos and Spaenlehauer [62], based on a version of a Viro’s method originally used by
Sturmfels [385], and by El Hilany [172] for bivariate fewnomial systems with five monomials.

All this shows that major progress has still to be done towards further improving the
bounds of Khovanskii and of Bihan and Sottile.

Revisiting the forgotten Sevastyanov’s theorem

In 2009, Avendano [20] proved that the number of real intersections of a fewnomial
planar curve with t terms and a straight line is at most 6¢ — 4. This can be considered a
particular explicit case of Sevastyanov’s theorem when D = 1.

In general, an explicit bound for the general case of Sevastyanov’s theorem was given
by Koiran, Portier and Tavenas [263], based on previous work in [264]. The latter work was
motivated by a discovery of a deep connection between a certain class of algebraic circuits
that use fewnomials and complexity theory, the so-called real T-conjecture, by Koiran [262].”

Theorem FS'7 (Koiran-Portier-Tavenas theorem). [263; Theorem 15]. Let f € R[X,Y]
be a fewnomial with at most t terms and g € R[X,Y] a polynomial of degree at most D.

"Fora proof in a restricted setting, see [197].
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Then the number of connected components of the zero set of the system

is at most O (D3t + D?t3). m

The theorem above becomes open if the second polynomial is also a fewnomial.® Fur-
thermore, the above bound might not be tight, as it is the case for D = 1 due to Avendano’s
bound [20]. Recently, Bihan and El-Hilany [60] improved the latter bound to the tight upper
bound 6t — 7.

All this shows that even in the low-dimensional cases, Open Problem J remains a chal-
lenging problem.

A multivariate version of Descartes’ rule of signs?

In 1996, Itenberg and Roy [231] conjectured a multivariate generalization of Descarte’s
rule of signs. Unfortunately, in 1998, Li and Wang [278] found a counterexample to their
conjecture.

After this, more than ten year passed by before seeing some progress. In 2010, Aven-
dafo [16] proved the optimality of Descarte’s rule of signs in some sense. However, another
ten years had to pass until a partial multivariate generalizations of the Descartes’ rule of signs
appeared.

In 2016, Miller, Feliu, Regensburger, Conradi, Shiu and Dickenstein [296; Theorem 1.5]
proposed the first multivariate partial generalization of Descartes’ rule of signs, which can
deal with at most one zero. Interestingly, this generalization was grounded in the application
of real fewnomial theory to chemical reaction networks. Later, Bihan and Dickenstein [58]
gave a generalization for fewnomial systems in n variable with at most n+42 exponent vectors,
and this year, Bihan, Dickenstein and Forsgard [59] have proposed a tight generalization for
the latter case.

The above generalizations show that there is still a long path until a satisfactory general
multivariate generalization of Descartes’ rule of signs is obtained, but that there is hope that
a multivariate generalization of Descartes’ rule of signs might be possible in the near future.

5% Random real algebraic geometry

A common technique in real algebraic geometry to make a problem easier is to substi-
tute the problem of finding a worst-case bound of a phenomenon by the problem of finding
a bound for the expectation of a random version of the phenomenon. On the one hand, the
second bound can be more informative when we consider polynomials coming from a prob-
ability distribution in some applied context. On the other hand, it might give some insight in
the original problem and on how good the proposed worst-case bound is.

In our case, the technique is standard in random real algebraic geometry. The expec-
tation of the number of zeros of a random real polynomial system is a central topic in this
area. The main techniques go back to the seminal work of Edelman and Kostlan [166].

8The case of the intersection of a trinomial and a fewnomial can be found in [264; Corollary 16].
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However, one should take into account the previous works by Littlewood and Offord [279],
Kac [239, 240], Erdds and Offord [174], Kostlan [265], Shub and Smale [367] and many
others (see [64] for a survey on the topic regarding the univariate case).

In the fewnomial setting, the idea of using random objects is not new. Rojas [338]
and Malajovich and Rojas [283] already considered random real fewnomial systems, and
Shiffman and Zelditch [363, 364] random complex fewnomial systems. However, none of
their bounds depend solely on the number of exponent vectors. A big motivation to apply
the probabilistic approach to the Kushnirenko Hypothesis lll was its successful application
by Briquel and BUrgisser [76] to the real t-conjecture of Koiran [262].

We introduce the main probabilistic result that we will be using to compute the number
of zeros. First, we introduce an auxiliary formula from integral geometry; second, we present
and prove an integral formula for the expected number of positive zeros of a random function
in a very general sense.

F52-1 An intersection formula for random maximal spheres

Poincaré’s formula allows us to compute the expected volume of the intersection of ran-
domly placed smooth submanifolds. Recall that every m-dimensional smooth submanifold
M of the p-dimensional sphere SP inherits naturally a Riemannian structure from SP. This
Riemannian structure induces a volume form on M and so we can talk about the volume of
M which we denote by vol,, M. Note that vol, is the cardinal, #, of the set.

Theorem FS21 (Poincaré’s formula). [87; Thm. A.55]. Let M, N € SP be smooth sub-
manifolds of dimensions m and n, respectively, such that m +n > pandu € O(p + 1)
be uniformly distributed with respect to the Haar probability measure. Then almost surely
M N uN is a smooth submanifold of dimension m + n — p, and

m+n—p+1 Wmyp—pt1
(m+1)(n+1) Omp1wpi1

Eveo(p+1) VOlmyn—p(MNUN) = volg, M vol, N.

The above formula implies immediately the following easy corollary.

Corollary F$22. [et M C SP be a smooth submanifold of dimensions m and 1 € O(p +1)
be uniformly distributed with respect to the Haar probability measure. Then, almost surely,
M nuSP~1is a smooth submanifold of dimension m — 1, and

Eveo(p+1) VOlm—1 (M N uSP) = W
m+1

vol, M.

Proof. Just recall that volp,—; SP71 = pw,. O

The above formula applied inductively gives the following nice formula which is the one
we will be using.

Proposition FS23. [93; Proposition 2.1]. Let M be an m-dimensional smooth submanifold
of SPand uy, ..., uy € O(p + 1) be independent and uniformly distributed with respect to
the Haar probability measure. Then we have

I]Elll,...,umeo(p+1)#(M N ulgp_l Nn...N umgp_l) = Cm VO|m(§n),

_ 2
where ¢, = i en
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Remark FS21. Our main reason to write the constant in the right-hand side of the identity in
Proposition F5$23 is that this constant will be irrelevant to our proof technique. Because of
this, we hide its value to show that it is not important. 1

Remark F522. There are further generalizations of Poincaré’s formula in more general ambi-
ent spaces by Howard [228] and Burgisser and Lerario [94; Cor. A.3]. |
F52-2 An integral formula for the expected number of zeros
Suppose we are given a smooth and semialgebraic function
¢:RT — R!
without any zeros in [R{j’r. Associated to this function, we can consider the random function
f: R - R"
2;21 Cl,j(Pj(X)
x = [l o(x) = :
;:1 Cn,j(Pj(X)
where [¢;;] € R™" is a Gaussian matrix. Our goal is to study the expectation of the number
of nondegenerate zeros of f.
Example F$?1. Let ¢ : R7. — R' be the map given by
xM

X}—)XA;: S, F.1)

XAt

where A; is the ith row of A. Then f becomes a random polynomial and our problem reduces
to estimate the number of zeros of a random polynomial. A

Consider the following random variable
N(c) := #{x € R7 | f(x) = 0, detDyf # 0}

taking values in N U {o0}, which counts the number of nondegenerate positive zeros of f.
We now give a formula for its expectation that is the desired quantity.

Theorem FS24 (Edelman-Kostlan counting formula). [265; Thm. 3.3], [166; Theorem
7.1] and [93; Theorem 2.2]. In the above setting,

EN = c,,/ \/det((ﬁxw)*ﬁxq;) dx
+

where c, is as in Proposition F$?3 and y : R7 — S'! s the smooth map given by

e
¥(X) = o001

Proof. [93; Proof of Theorem 2.2]. We define the semialgebraic sets

V:={x € R} | rank Dyy < n} and U := {x € R | rank Dyy = n}.
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Then we partition the open set U into the semialgebraic sets
Uk == {x € U | #(y (w(x)) nU) = k},

for k € N'U {o0}. We associate with these semialgebraic sets the random variables
Ny(c) := #{x € V| f(x) = 0, detD,f # 0}

and
Ng () := #{x € Uy | f(x) = 0, detD,f # 0}.

Since {V, Uy, Us, ..., Us} form a partition of R”, it suffices to prove that

ENy = ¢, / \/det ((Dxw)*Dyy) dx, (F.2)
V

and that for all k € N U {co},

ENg = cp d’[ dx .3
c=er [ oot (BowrDov) .3

The right-hand side of (F . 2) is zero since rank((Dxw)*Dxy) = rank Dyy < n for all
x € V. In order to prove (F.2), it is enough to show that Ny = 0, which means that every
zero x € V of the system f is degenerate (i.e., D,f is singular). By the definition of f, we have
that f(x) = [c;j]@(x) and so Dyf = [¢;;|Dx¢p, for every x € R”. By an explicit computation,
we get

1
llo(x

Suppose now that x € V satisfies f(x) = 0. By (F.4) and rankﬁxw < n, we either have
rank Dy < n, or there is some v, € R” \ 0 such that @(x) = Dy vy. In the first case,
D,f = [c,J] x@ is singular. In the second case, D,fvy = [c,j]Dch vy = [cjle(x) = f(x) =
0, hence v, € kerD,f and D,f is singular as well. We have thus shown that (F . 2) holds.
For showing (F. 3), let y1, ..., ¥+ be new variables. We associate to the functions f; =
-1 Gj@;(x) the linear forms ¢; := X, ¢;jy; and denote by Z(£1, . . ., £,) their zero set.
So we have fi(x) = €j(¢@(x)) for all x. By the definition of U, we have

Doy = )”( W(W(x)" e ®.4)

#{x € Ue | F(x) = 0} = k #(w(Ug) NZ(Ls, . ... €1)). F.5)

We first consider the case where dimy(Ux) = n and d € N. Using the stratification
of semialgebraic sets into manifolds (cf. [70; Chap. 9]), one shows that y(Uk) contains a
smooth n-dimensional submanifold My of St~ such that dim(y(Ug) \ M) < n. By Sard’s
Theorem (cf. [87; §A.2.4]), aimost surely, the random hyperplanes Z(¢;), . . ., Z(€,) intersect
the n-dimensional manifold M, transversally,

W(U) NZ(lr, ... ) = M NZ(Er, ..., En).

Moreover, all the zeros of f(x) = 0 in Ug are nondegenerate. With (F . 5) we conclude that,
foralmost all ¢, ..., €,,

N () = #{x € Uy | T(x) = 0} = k #(w(Ug) N Z(E1, ..., &) = k # (M NZ(Ls,. ... €1)).
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Therefore, applying Proposition FS23 to the manifold My, we obtain
ENk = k E#(Mi N Z(&, ..., £,)) = cpk voln(My).

Now we use that

[ et (@B ax = [ #0690 U dMuty) = K vol (M)
Uk YeMy

which follows from a slightly extended version of [87; Cor. 17.10]. (One can show that it
does not matter that y(Ux) may not be a manifold). This implies (F . 3).

In the case where dmy(Ux) < nand d € N, we write y(Ug) as a union of smooth
manifolds of dimension less than n. Then, using Sard’s Theorem, we see that (F. 3) trivially
holds in the form 0 = 0.

To complete the proof, it suffices to show U, is empty. By way of contradiction, assume
that x € U. By the Constant Rank Theorem [275; Theorem 4.12], the fiber y~! (y(x)) NU
is a zero-dimensional subset of the open set U, since rank Dy = n for all p € U. However,
vl (y(x)) NU is semialgebraic and hence finite, since any zero-dimensional semialgebraic
set is finite. This contradicts x € U, completing the proof. m|

Remark F§23. We note that our proof is different from the one in [265] and [166]. Our proof
is more detailed than the one there and worked out in detail. |

F53 Probabilistic Kushnirenko Hypothesis |li

We introduce the notion of random fewnomial system, which is the basis of our ap-
proach.

Definition FS31. Let A C Z" beasubsetando: A — R be amap. The random fewnomial
system with support A and system of variances o is the random fewnomial system f given
by

fi:= Xaeao(a)cyaX®

fm = Xuaeao(a) Cl,axa
where ¢; 4 € R are independent identically distributed (i.i.d.) Gaussian variables, i.e., [¥; «] iS
a Gaussian matrix.

Remark F$31. The function : A — R_. should be seen as assigning a different typical de-
viation to each one of the random coefficients of the system. In other words, the coefficients
fi.« Of f are independent random variables such that f; o ~ N(0, o(a)). Because of this, our
probabilistic model for random fewnomial systems is very robust. 19

The following bound is the most important result of this appendix.
Theorem FS31. [93; Theorem 1.1]. Let N(A, &) be the random variable counting the num-

ber of nondegenerate positive zeros of the random fewnomial system § with support A and
system of variances o. Then

1 [t
EN(A 0) < 2"‘1( ),
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for every A C Z" of size < t and every map o: A — R.. Further, if A affinely spans R”,
then almost surely every positive zero of T is nondegenerate.

Remark ¥$32. [93; Remark 1.2]. The above result holds for more general distributions. One
only needs to assume that the random vectors

G = (ci,a)aeA € RA

are independent and that for each one of them, ¢;/||¢;|| is uniformly distributed on the unit
sphere of R, T

Remark FS$33. We note that the obtained bound for the expectation in Theorem FS31 is better
than the bound of Kushnirenko Hypothesis lll. Given the counterexample to this conjecture
by Sevastyanov and Haas, we can jokingly say that “Kushnirenko Hypothesis lll is generally
true, although it will be sometimes false”. This is the reason behind the title of this section.

An important corollary of the above result is the following one. It shows that the usu-
ally studied fewnomial systems with n + k exponent vectors have no zeros with very high
probability, independently of the considered support and system of variances.

Corollary ¥$32. [93; Remark 1.3]. Let k be a constant. Then

lim sup EN(A, o) = 0.
M=% ACZ" #A<n+k
O'ZA—)R+

In particular,

lim sup P(N(A,0) =0) = 1.
N—=00 ACZ", #A<n+k
O'ZA—)R+

In other words, the probability that a random fewnomial system with n + k exponent vectors
has no positive hondegenerate zeros goes to one independently of the considered support
and system of variance.

Proof. We just need to apply Theorem F§31 and ( Since (”Zk) is a polynomial

of degree k in n, it is clear that the right-hand side converges to zero as n goes to infinity.
The last part follows from the fact that N(A, o) is a random variable with values in N U {oo},
and so

") = (7).

P(N(A,0) > 1) < i kP(N(A, o) = k) < EN(A, o),
k=1

which is a particular case of Markov’s inequality. a

Remark FS34. We note that both convergences are exponentially fast in n. Therefore, in
fewnomial systems with only a few more exponent vectors than variables, positive zeros are
rare. This shows that the fewnomial systems in n variables and with n + k exponent vectors
constructed by Bihan, Rojas and Sottile [61] and by Phillipson and Rojas [313] with at least
|1+ ﬁjk_l roots for n > k are probabilistically rare.

Moreover, let us note that EN(A, o) is very small compared with the number of zeros
of the explicit fewnomial systems with many zeros produced by Phillipson and Rojas [313].
This only points to the suspicion that the chosen probabilistic model might not be the best
to produce fewnomial systems with many zeros. |
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We now turn our attention to the proof. First, we consider a special kind of systems
that will be instrumental in the proof; and second, we give the proof of Theorem FS31. As
a bonus, we show that the bound can be improved when n = 1 and when the system of
variances is a constant map.

FS3—-1 Special systems with few terms

We prove a deterministic result (Lemma FS34) on the real zeros of a particular class of
sparse systems that involve square roots and thus go slightly beyond our polynomial setting.
This result will allow us to prove the following inequality of integrals that will be instrumental
in the proof of Theorem F$31.

Proposition F$33. [93; Proposition 3.1]. Consider the function g : R” — R, defined by

1
g(x) = ( J’."Zl cfxzﬁf)Q, where B1...,Bm € Z"and ¢y,...,cm > 0. Take a1, ..., Q&, €
Z" and oy, ...,0, > 0, and define the functions ¢: R} — [R’jfl and y: R — S" by
0'1X0(1
¢(x)
P(x) = and y(x) :=
opx%n llo(x)l
g(x)

Then we have

Ch /n \/det((ﬁxw)*DX\p) dx <

+

where ¢, is as in Proposition FS23,
For proving Proposition F$33 we need the following lemma.

Lemma F$34. [93; Lemma 3.2]. Let g(x) be the function from Proposition FS34, but with
Bi...,Bm € R". Moreover, let ay, ..., a, € R". Then, for any non-singular [\;;] € R™",
the system

Z)\,’jxaj =g(X), (i €[n]),
Jj=1

has at most two nondegenerate zeros in R,

Proof of Proposition FS33. We begin with the following general observation: let vy, . . ., v,, W
be independent Gaussian vectors in R”. Then

Z P(w € cone(gvy, .. .,&,0,)) = P(w € span(vy,...,v,)) = 1.
ee{-1,1}"

By symmetry, the probabilities do not depend on €, so that we get
P(w € cone(vy,...,0,)) =27". (F.6)
Suppose now that [x;;] € R™("+1) is a Gaussian matrix. If the random system

%0g(X) + ) 1oX% =0, (i € [n)), F.7)
j=1
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has a positive solution, then —x is a positive linear combination of x4, ..., ¥, and so
—X) € cone(xy,...,%,).

The probability of the latter is at most 27" by (F. 6). Hence the probability that the random
system (F . 7) has a positive root is bounded also by 277,

By Lemma F$34, the maximum number of positive nondegenerate zeros is at most two.
Therefore, the expected number of nondegenerate solutions of (F. 7) is bounded by 2 - 277,
The assertion follows now by Theorem FS24, m|

We recall the following fact about changing variables that we will use in the proof of the
lemma. Suppose A € R™" is an invertible matrix. Then

Ri—)Rl

x - x4

(F.8)

where x* was given in (F . 1), is a diffeomorphism. Indeed, via the group isomorphism R” —
R, y = exp(y) and its inverse R} — R”", x + Inx, this turns (F.8) into the linear
isomorphism y +— Ay.

Proof of Lemma F$34. We divide into cases, depending on the rank k of the linear span of
al, c ey (Xn.
In the case k = n, using the transformation in (F . 8), we can assume without loss of

generality that ay, . . ., a, is the standard basis of R”; thus we study the positive zeros of a
system
n
D INpX =g (X), (i € [n)). F.9)
j=1

Subtracting the nth equation from the others gives the system ZJ’.’ZI()\,-J- — Apj)X; = 0,
(i € [n —1]), which has a one-dimensional solution space RE, for some nonzero £ € R".
We can assume that £ € R/} since otherwise the system (¥ . 9) has no solution in R
Plugging in x = s& with unknown s € R, into (F.9), we obtain by squaring the first
equation
m 2 m
IRV BT
j=1 j=1
where y; denotes the sum of the components of B;. We apply now Descartes’ rule to this uni-
variate polynomial in s (with possibly real exponents). Since the sequence of coefficients has
at most two sign changes, there are at most two positive real zeros, provided the polynomial
does not vanish altogether. In the latter case, all the y; equal 1 and we have g(s€) = sg(§).
The system (F . 9) then becomes the system s .; A;;§; = sg(§)ins, fori =1,...,n, whose
solution set is either empty or all of R,.. But then all solutions of the original system (£ . 9)
are degenerate.
In the case k < n, using the transformation in (F. 8), we can assume without loss of
generality that aq, ..., a, is contained in R x 0"k, Subtracting the nth equation of the
original system from the others gives the system Zj’.’:l(h,-j —Apj)X% =0, (i € [n—1]). Since
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x% only depends on x4, ..., Xk, thisis a system of n — 1 equations in k variables, having n
exponent vectors.

If K < n—1, this system only has degenerate solutions and we are done. If Kk = n —1,
we are faced with a system of n—1 polynomials in n—1 variables having n exponent vectors.
This system can be put in the form

X% = g; X% (i € [n—1]),

after reordering the a; if necessary, since [A;; — Ap;] has to contain a non-singular maximal
minor, because [A;;] is non-singular. The above system can be turned into

X%~ — g, (i € [n— 1)),

which has a unigue nondegenerate positive solution if {a; — &y, ..., xp—1 — &, } has rank
n — 1 or none otherwise. In the latter case, we are done; in the former case, let & be the
unigue nondegenerate positive real solution g of the system. Substituting (&1, . . ., &n—1, Xn)

with unknown x, in the last equation, and using a; , = 0, we obtain after squaring

2
m

n
g% ®jn-1 2¢2Bi1 2Bin-11 2Bjn
R NT: SEARERE Sl I Y- SRR b
j=1 j=1

By Descartes’ rule, this polynomial in x, (with possibly real exponents) has at most two
positive zeros, unless it vanishes altogether, in which case all solutions of the original system
are degenerate.

Summarizing, we have shown that in all cases, the system has at most two nondegen-
erate solutions. O

Remark ¥535. The bound in Lemma F$34 is optimal. The system

Xp = 4J14 2X3X2

i

X = 1+ +X3X2
has exactly two positive nondegenerate zeros. 19

F$3-2 Proof of Theorem FS$31

We fix a support A € Z" of cardinality t and a system of variances : A — R, . Similarly
to Example F$21, we consider the map
Pao: R? — R

(F.10)
x > (0()x%) gen

together with its scaled version

wao : R7T — S(R?)
(PA,G(X)
lpac(x)ll

X =

b
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which takes values in the unit sphere.
As all the functions are semialgebraic, we can apply Theorem FS?4, which implies that

EN(A, o) = ¢, / \/det((BXWA,G)*Ewa,G) dx.
R
We abbreviate M(x) := Dywas. For | € Awith |I| = n we denote by M;(x) the square sub-
matrix of M(x) obtained by selecting the rows with index in I. The Cauchy-Binet formula [77;
Part I, Ch. 4, §6], combined with the elementary inequality ||ulls < ||u]l1, gives

VAet(MOx)™M(x)) = | " (detMi(x))?| < )" |detM(x)]. (F.11)

Therefore,
EN(A,0) < ch/ | det M (x)| dx.
=n R7

It suffices to prove that

1
Cn /n | detM(x)|dx < Py (F.12)
R+
since there are () summands.
For showing this, we put | = {ay,...,a,} and o; := o(a;). We then apply Proposi-
tion F$33 to the function ¢: R7 — R+ defined by

o x* 1
) 2
Q(x):=| | where g(x)==| > o(a):x™
OnX™" acA\l
g(x)
Note that
n
lo()I? = D o7x™ + > o(0)’x™ = > 0(0)*x™ = [lgas(x)II*.
i=1 aeA\l aeA
Moreover, the ith component of the scaled function y(x) = @(x)/||¢(x)|| satisfies for
1<7i<n, .
(X o;ix™
wi(x) = ¢i(x) i ,

el lleas(x)l
which is the a;th component of wa s(x). Therefore, Mj(x) = [axj\p,-],-,j <n. The Cauchy-Binet
formula implies that

| det My(x)| < \/det((ﬁxw)*wa).

Proposition F§33 gives

— — 1
o /R" \/det((DX\p)*DX\p) dx < T
+

Combining the above shows (F . 12) and completes the proof of Theorem F§31. O
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F53-3 The case of one fewnomial

The case of a univariate polynomial is always of special interest. In this special case,
we are able to provide a better bound for the case in which all typical deviations of the
coefficients are the same.

Theorem FS35. [93; Theorem 1.4]. Let A C Z and 1 : A — R be the constant map
taking the value 1. Then

2
EN(A, 1) < =Vtint.
T

Remark FS36. The above bound looks like a mixture of the bound of Kac [239] and the
bound of Kostlan [265]9. Both of these bounds are for A = {0, ..., d}, i.e., the dense case,

1
but Kac considered the constant system of variances 1 and Kostlan the map a +— (;’) “.In
Kac’s case, the bound is (n™! + o(1))In d, and, in Kostlan’s case, 2Vd. In this way, the
above bound in Theorem F$35 looks like the product of these two bounds. 19

Proof. Note that g := f(1/x) is a random Laurent polynomial with support —A, whose ex-
pected number of zeros in (0, 1) is precisely the expected number of zeros of f in (1, o).
Therefore, it is enough to bound the expected number of zeros E N(O,l)(A, 1) in the interval
(0,1) by %tl/ 2|n ¢t for a random polynomial with arbitrary support A of size t. Moreover,
since multiplying by x* does not alter the number of zeros in (0, 1) of a polynomial, we can
assume without loss of generality that 0 € A € N.

We observe that Theorem F$24 holds for any open subset of [Rii with the same proof.

Hence
1 1
ENoa) = 5 [ IW0llax
0

where @(x) = (x¥)aea and y := @/[[@ll. By (F.4), w'(x) = [l@(x)[|"'Px¢’(x) where Py
is the orthogonal projection onto the orthogonal complement of y(x), and so

IPxe" (Il _ [l ()l

OOl = o000 = el
Hence,
I 00 < VeI~ VE (o0l .19

using the standard inequalities between the 1-norm and 2-norm in R?. Finally, we obtain by
integrating

1
/0 Iy’ ()l dx < Ve (inlle0)lh = Inll$(0)lh) < Ve Int,

since 0 € A C N, which gives the desired result. |

9AI‘[hough the bound in the univariate case is attributed to Shub and Smale [367], it was Kostlan in [265]
who did the univariate case first. Shub and Smale proved the general multivariate case in [367].
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F5* A random real fewnomial theory?

As of today, Theorems FS31 and FS$35 are the only existing results in what we may call
random real fewnomial theory. However, these two results open more doors than what the
number of doors they close. We now pose some conjectures, speculations and questions,
which should be seen as an invitation to develop a random real fewnomial theory.

F54—1 Probabilistic Kushnirenko Hypothesis |

Kushnirenko Hypothesis | states that the topological complexity of the zero set Z ., (f)
of a fewnomial system should be bounded by a function on the number of equations g,
the number of variables n and the number of exponent vectors t. One can find precise
bounds for this in the works of Khovanskii [257], Bihan, Rojas and Sottile [61], and Bihan
and Sottile [64]. The latter bounds have an extra 2" factor that do not appear in the zero-
dimensional bound of Theorem FS$*6. Based on Theorem FS$31 and this extra factor we
propose the following conjecture, where we just add the extra factor 2” to the bound.

Hypothesis F.I. Let | be a random fewnomial polynomial in n variables with t exponent
vectors. Then

t
EBu(Z.(1) < (n)
where By is the sum of the Betti numbers of Z,(f) := {x € R | f(x) = 0}.

Since we can see the n in 27! as the codimension in the zero-dimensional case and
we are conjecturing that this factor disappears when the codimension is one, we also make
the following conjecture that generalizes the one above for arbitrary codimension g.

Hypothesis F.II. Let f be a random fewnomial system with q equations in n variables
with t exponent vectors. Then
1 [t
29-1\n )’

where By is the sum of the Betti numbers of Z,(f) := {x € R’ | f(x) = 0}.

ERs(Z+ (1)

IA

An alternative generalization of Theorem F$31 can be obtained if we substitute cardinal-
ity by volume when we pass to smaller codimensions. Unfortunately, we have to be careful,
since a naive conjecture would trivially be false as shown by a random linear system. This is
why we restrict the conjecture to the unit cube.

Hypothesis 7. III. Let f be a random fewnomial system with q equations in n variables
with t exponent vectors. Then

9q-1

E voly_q (Z4() N (0, 1)) < = (t )

where vol,_q is the (n — q)-volume of Z, () := {x € R | f(x) = 0}.

Of course, the above conjectures might be false as stated. However, we expect the
bounds to be polynomial in t. We state precise bounds as they are usually more motivating
than finding a vague polynomial bound.
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F54—2 How does EN(A, ¢) depend on the support (A, 6)?

The bound in Theorem FS31 is universal in the sense that it does neither depend on
neither the support A nor on the system of variances ¢. A natural question is how does the
expectation depend on these parameters. Based on the experience with dense systems, we
expect such a variation to occur.

Motivated by the fact that the number of non-zero complex roots grows when increasing
the support, we conjecture the following.

Hypothesis F.1V. Let A,B C Z" be such that AC Band o : B — R, be a map. Then
EN(A, oja) < EN(B, o).

In dense systems, the system of variances affects enormously how the zeros of a system
are distributed. We expect a similar behaviour in fewnomial systems. Because of this, we
propose the following conjecture regarding lower and upper bounds. They are motivated
slightly by Kac’s result [239].

Hypothesis F. V.

1 (Int
inf  EN(A,0) = 0O
ACZM #A<t 2n-1\ n

O'ZA—)[R+

and

1 t
sup  EN(A,0) = @( n—1( ))
ACZ" #A<t 2 n
G:AHR+

where f(t,n) = ©(g(t,n)) means that there are universal constants L,L” > 0 such that
Lg(t,n) < f(t,n) <L'g(t,n).

A proof analysis of Theorem F$°1 reveals that (! ) can be substituted by the cardinal of
Bh(A) = {XCA|#X=n, R" = spanX},

which is the set of bases of R” contained in A. This might point to a connection between
weighted matroids and random real fewnomial theory, since (A, o) can be seen as a linear
representation of an integer linear matrix. This motivates the following question.

Open problem K. Can EN(A, o) be related to a characteristic of the weighted matroid
associated to (A, 0)?

In Theorem F$35, we have shown that when the system of variances is constant we
can improve the existing upper bound for the univariate case. This motivates us to formulate
the following conjecture.

Hypothesis F.VI. Let A C Z" and 6 : A — R a map. Then for some constant C > 0,

EN(A,0) < (CVEIn t)".
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F54-3 Bounds for more general fewnomial systems?

We note that the exponent vectors of a fewnomial system can be allowed to be real
vectors and not just integer vectors. If one is able to drop the semialgebraic hypothesis from
Theorem F$24, the following should hold.

Hypothesis F.VII. Let A C R" be such that #A < t and o : A — R, be a map. Then

EN(A, o) < 2n1_1 (t )

Further, the used techniques don’t seem to rely too much on the fact that we are working
with polynomials. Moreover, many results of Khovanskii [257] hold for a more general class
of functions known as Pfaffian. Because of this, we propose the following conjecture.

Hypothesis F . VIII. Let ¢,..., 9 : (0,1)" — R be Pfaffian functions such that the map

¢1(x)

P: x>
@n(x)
is a smooth submersion and has no zeros. Let § be the random system given by
f=[eijle

where [¢j;] € R™" js a Gaussian matrix. Then there is a constant C > 0 such that

E# (Z() N (0.1)7) < — (t)

— 9n-1
where Z () is the zero set of {.

We conclude by noting that we have imposed the same support to all polynomials in our
random fewnomial systems. There is a wider class of fewnomial systems where we allow a
different supports for each one of the polynomials. Following the line of the Open Problem K,
we propose the following conjecture.

Hypothesis F . 1x. LetA,...,A, CR"ando; : Ay > R, ..., 0, : A, = R,. Consider
the random § whose ith component is given by

fi = Z oi ()¢«
aeA;

where the «; « are i.i.d. Gaussian variables. Consider also the random variable
N(AL, ..., Ap O, ..., 0n)(¢) == {x € RT | f(x) = 0, rank Dxf = n}

that counts the number of nondegenerate positive zeros of . Then
1
EN(Al, ce ,An, O1ye vy O'n) < F #Bn(Al, ce ,An)

where B,(A1, . ..,A,) is the set of bases B of R" such that for each i, A; N B has exactly
one element.
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Further comments

Almost all of the statements and proofs here are taken literally from [93] with minimal
changes. The main additions of this appendix to [93] are a better historical overview, which
was clearly lacking in the original paper; and the final set of problems and questions that
points to a possible future of random real fewnomial theory.

The core ideas regarding random real algebraic geometry can be found mainly in [166].
However, the main trick of the proof of Theorem F$31 is an application of the Cauchy-Binet
inequality which reduces a general bounding problem to a really specific family of systems.
The combinatorial flavour of this technique can make one suspect that there is something
deeper behind this proof.
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When it was my turn, | got up and said, “I'm sorry; | hadn’t realized that the official language
of the Brazilian Academy of Sciences was English, and therefore | did not prepare my talk in
English. So please excuse me, but I’'m going to have to give it in Portuguese.”

Richard P. Feynman, Surely You’re Joking, Mr. Feynman!

¢ Como computar la “forma”
de un conjunto semialgebraico?

En este apéndice, trataré de describir de una forma sencilla los resultados principales de
esta tesis en castellano para un publico no especialista. Por supuesto, es imposible hacer
esto sin sacrificar detalles y precision. Mi intencion no es otra que transmitir una imagen
gréfica de en que ha consistido esta tesis. Les lectores no deben tratar de entender cada
palabra o frase de este escrito, sino tratar de obtener una vision general.

El tema principal de esta tesis doctoral es el calculo numérico de grupos de homologia
de conjuntos semialgebraicos. Hemos nombrado tres conceptos: calculo numérico, grupos
de homologia y conjuntos semialgebraicos. El Ultimo es el objeto en el que estamos interesa-
dos, el segundo la propiedad qué nos interesa conocer y el tercero la accion que queremos
gjercer. Por esto mismo, explicaré los términos en el orden inverso en el que estan listados.

Por simplicidad explicaré como funciona todo en el plano, pero es importante notar que
en matematicas los objetos en el plano no son mas que casos particulares de objetos n-
dimensionales con n un numero arbitrario. Mientras que en fisica se conforman con cuatro
dimensiones o con las 10, 11 o0 27 de la teoria de cuerdas, en matematicas se considera
un numero arbitrario de dimensiones y se estudian las propiedades generales del espacio.
Esto no es sdlo interesante desde el punto de vista tedrico, sino también desde el punto de
vista practico, porque si un modelo de las ciencias naturales tiene 13, 25 o0 123 parametros,
muchas veces es Util considerar el modelo como un objeto dentro de un espacio con 13,
25 0 123 dimensiones.

M5t Conjuntos semialgebraicos

Los conjuntos semialgebraicos son una clase de conjuntos que se pueden describir con
polinomios y las operaciones usuales de teoria de conjuntos. Para mostrar su generalidad,
dejadme indicar que la image en la Figura MS'1 es un conjunto semialgebraico.
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Figura MS11: Un conjunto semialgebraico complicado

Recordemos que un polinomio no es mas que una expresion que se puede obtener
sumando y multiplicando ndmeros y variables, en nuestro caso X e Y. Consideremos un
polinomio en particular,

f = X" — 325X3Y° 4+ 1789XY — 4.

Para nosotros lo mas importante de un polinomio es que es una regla que asigna valores
numéricos a listas de nimeros. Por ejemplo, podemos considerar el valor de f en (0, 0),
(25,-12) y (=7,0), con lo que obtenemos

£(0,0) = —4, £(25,—12) = 56646978921 y (=7, 0) = —823547.

Para nuestros conjuntos semialgebraicos, nos interesan los puntos segun el signo del poli-
nomio, esto es, segun el valor del polinomio en el punto sea cero, positivo 0 negativo.

De esta forma, los conjuntos semialgebraicos atdbmicos son conjuntos semialgebraicos
que se pueden describir como

p=0,p#t0,p2>20,p>0,p<00p<0

para algun polinomio p. Y los conjuntos semialgebraicos generales son los que se obtienen
de estos mediante uniones, intersecciones y complementos. Asi, es general describir estos
conjuntos por férmulas, como

(p1=0)V (P2 <0A=(ps=0))

donde V significa que tomamos una unidén, A que tomamos una interseccion y - que to-
mamos un complemento. Para ilustrar esto, veamos como se construyen el conjunto semi-
algebraico dado por (X2 + Y2 < 1) v (X +3Y = 0)) A (=(3Y = X% < 0)) en la Figura M1 2
y el dado por (XY < 0) A (2 +Y2 < 1)V (XY =0)))V (X2 +Y?=1)enlaFiguraMs3.

Para le lector con inclinaciones practicas, debo indicar que los conjuntos semialge-
braicos aparecen de forma natural al considerar el conjunto de configuraciones posibles de
un brazo robdtico. Para un ejemplo muy sencillo de cémo esto sucede, se puede mirar €l
Example 0521 en la introduccion donde se muestra como este conjunto se describe para
un brazo robdético determinado.
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3Y -X2 <0 -(3Y = X% <0)

XP+Y2 <)V (X+3Y=0) (X*+Y?<1)V(X+3Y=0)
A(=(3Y = X% < 0))

Figura MS*2: Construccién de (X* + Y2 < 1) V (X +3Y = 0)) A (=(3Y = X2 < 0))
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XY <0 X24+VY2 <1
XY =0 X2+Y2=1

X2 +Y?2<1) V(XY =0) XY <0)A ((X*+Y2<1) V(XY =0))

(XY <O)A(OC+Y2<D) VXY =0) V(R +Y2=1)

Figura MS*3: Construccién de (XY < 0) A (X2 +Y2 < 1) V(XY =0)) VvV (X2 +Y2=1)
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M52 Grupos de homologia

El mayor problema a la hora de entender los conjuntos semialgebraicos, es que a priofi
no sabemos en qué puntos un polinomio es positivo, negativo o cero. Esto hace que las
formas de un conjunto semialgebraico sean dificiles de entender. Y si ya son complicadas en
el plano, en un espacio de dimension arbitraria son excesivamente intrincadas. Por supuesto,
queremos saber decir qué forma tiene un conjunto semialgebraico.

En este punto, los grupos de homologia dan una aproximacion a la pregunta de qué
forma tiene un conjunto. En vez de centrarnos en toda clase de detalles geométricos, nos
centramos en las partes de la forma que aun deformando el conjunto se preservan. En este
intercambio, perdemos informacion sobre el conjunto, pero ganamos la habilidad de decir
algo sobre la forma. En este sentido, los grupos de homologia proporcionan informacion
sobre la forma de un conjunto semialgebraico.

En general, el i-ésimo grupo de homologia de un conjunto X, H;(X), “cuenta” la canti-
dad de agujeros topoldgicos del conjunto X. Entender el significado preciso de H;(X) y qué
implica sobre la forma de un conjunto es dificil no sélo porque objetos de dimensién arbi-
traria entran en juego, sino porque el grupo de homologia es una simplificacion algebraica
de la nocién de agujero topoldgico, eso si, una simplificacion qué se puede calcular.

Aungue no podemos ser mas precisos en general, vamos a discutir sobre el significa-
do de Hyp(X) y Hy(X). Para ser mas precisos, vamos a dar mas bien el significado de los
numeros de Betti Bo(X) y B1(X) que miden, en cierto sentido, el tamafio de Hy(X) y Hy(X),
respectivamente, y qué son mas faciles de entender. Es importante notar, que los nimeros
de Betti son numeros naturales, esto es, 0, 1, 2, ... y que cuentan algo dentro del conjunto
que estudiamos.

El ceroésimo numero de Betti, B (X), cuenta las componentes conexas de X. La com-
ponente conexa de X que contiene un punto x No es mas que la region de aquellos puntos
de X a los que podemos llegar desde x sin salir de X.

El primer nimero de Betti, B1(X), cuenta el nUmero de caminos cerrados que no se
pueden contraer a un punto en X hasta equivalencia. Hay ciertos matices que estamos
ignorando, pero esos No son importantes para tener una intuicion acerca del significado de
1. Para visualizar esto, imaginemos que caminamos en el espacio con una cuerda y que
al terminar nuestro camino cerrado atamos los dos extremos de la cuerda creando un lazo.
Si podemos recoger esta cuerda, entonces el camino se puede contraer a un punto; si no
podemos, entonces tenemos un ciclo. En otras palabras, en este segundo caso, es como
si hubiera una columna en el espacio donde nos estamos moviendo.

Para clarificar el significado con ejemplos concretos, miremos a los espacios de la Fi-
gura MS24. En esta, los espacios X, y X, por un lado, y los espacios Y e Y, por otro lado,
son topoldgicamente equivalentes. Esto quiere decir, que tienen la misma forma topoldgica,
aunque claramente no tienen la misma forma geomeétrica. Si miramos al valor de By, po-
demos ver que en todos los casos es igual a uno, porgque podemos caminar de cualquier
punto a cualquier otro punto. Si miramos al valor de B1, se puede ver que es cero en el caso
de Xo ¥y X1 y que es tres en el caso de Y, e Y1. En el primer caso, esto es obvio, dado que
todo camino cerrado se puede contraer a un punto. En el segundo caso, la razon por la que
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Yo Y1

Figura M524: Dos pares de espacios (Xg, X1) Y (Yo, Y1)

el valor es tres, tiene que ver con que en cierto sentido todos los caminos cerrados que no
se contraen a un punto se pueden obtener a partir de tres de ellos.

De esta forma, podemos ver la clase de informacion que proporcionan los grupos de
homologia dan informacién sobre la forma de un conjunto. Aunque haya informacion que
se pierda, recordamos que esto se hace a cambio de ser capaces de obtener informacion
facilmente.

MS3 Calculo numérico

Una vez que sabemos qué queremos calcular, es importante entender como. El mé-
todo que usamos es similar al que se usa en cualquier pantalla que muestra una imagen:
aproximamos el conjunto por una nube de puntos a partir de la cual se pueden computar
los grupos de homologia. La idea de este fundamento la representamos en la Figura MS35,
donde se muestra la manera de aproximar una curva por una nube de puntos: ponemos
un reticulo, tomamos los puntos del reticulo que estan suficientemente cerca y después los
“engordamos”.

En la Figura MS35, hay diversas cuestiones que estan escondidas debajo de la alfombra:

1. ¢Como sabemos como de fino tiene que ser el reticulo para capturar apropiadamente
la forma del conjunto y no perder ninguna propiedad?
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Curva a aproximar
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Puntos del reticulo cercanos a la curva Aproximacion de la curva

Figura MS35: llustracion del fundamento tedrico del célculo

2. ;Como sabemos que puntos estan cerca si no sabemos qué forma tiene y por dénde
esté el conjunto semialgebraico?

3. ¢ Como sabemos cuanto hay qué “engordar” los puntos?

Justamente, estas son las preguntas a las qué responde esta tesis en general. Aunque no
puedo dar esta respuesta en detalle aqui, voy a dar ahora las ideas intuitivas subyacentes:

1. Hay un parametro, llamado condicion, que se puede estimar evaluando los polinomios
en los puntos del reticulo. Si el reticulo no es suficientemente fino, No se puede estimar
el parametro y hay que sustituirlo por otro mas fino.

2. BEvaluando un polinomio en un punto, podemos saber si el valor es “muy positivo”,
“muy negativo” o si esta “cerca” de cero. Usamos esto para seleccionar los puntos que

satisfacen aproximadamente la descripcion del conjunto semialgebraico considerado.

3. Cuanto hay que engordar las bolas depende explicitamente del niumero de condicion
y de cuan fino es el reticulo.
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Por supuesto, esta respuestas inducen mas preguntas cémo las anteriores, pero esto es
natural, dado que aqui no estamos haciendo un tratamiento técnico y nuestro lenguaje es
mas bien vago en el intento de hacerlo mas comprensible.

Por Ultimo, ¢por qué célculo numérico? La idea es que solamente podemos evaluar
nuestros polinomios con precision finita, va a haber errores. El término numérico hace refe-
rencia a que el método de célculo desarrollado es robusto, es capaz de lidiar con errores.
Por supuesto, esto tiene un coste, y hay conjuntos semialgebraicos para los que nuestro
método no funciona, porque errores arbitrariamente pequenos en los coeficientes de los
polinomios o el computo cambian la forma topoldgica radicalmente.
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After giving You our life, Mathematics,

which theorem will You reveal to us?

Long after we are not longer remembered,

will our names still inhabit Your world?

Once humanity becomes extinct in the universe,

will You still be there?

Or will You go away with all these other abstractions of the naked monkeys?

lasafro Maesman
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