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Symmetric extensions of polytopes

Josué Tonelli Cueto

Abstract

This writing are the notes of the talk given by myself in the seminar “Extension

of polytopes” organized by Prof. Dr. Raman Sanyal and Dr. Arnau Padrol at Freie

Universität Berlin on the 6th of May of 2015. The main objective is to show the

Yannakakis’ method to prove lower bound for symmetric extensions of polytopes. In

particular, it is shown how this method work in the case of regular polygons where

one can appreciate how the requirement of symmetry matters for extensions of poly-

topes.

1 Notations and preliminaries

Before starting, let’s recall some definition and fix some notations regarding discrete ge-

ometry and group theory.

Regarding discrete geometry, an affine map of polyhedra f : P→ Q will be an

affine map f : aff(P)→ aff(Q) such that f (P) ⊆ Q. Following this abuse of language,

we will call this affine map of polyhedra an affine projection if f (P) = Q and affine
isomorphism if it has an affine inverse (or, equivalently, that is bijective). Also, recall

that a slack variable of P is an affine map f : aff(P)→ R such that f (x) ≥ 0 for all

x ∈ P and that it is said to be normalized at p ∈ relint(P) if f (p) = 1 and irreducible
if f−1(0)∩P is a facet of P. Finally, bc(P) will denote the barycenter of P, V (P) the

set of vertices of P and Fp(P) the set of irreducible slack variables of P normalized at
p ∈ relint(P).

Regarding group theory, G y X will denote an action of G on X using the no-

tation gx for left actions and xg for right actions. Here, OrbG(x) will be the orbit of

x ∈ X ,StabG(x) the stabilizer of x ∈ X and ker(G y X) the kernel of G y X (which is

the subgroup of G that act trivially on X). Also, we will say that G y X is transitive if

there is a unique orbit, free all stabilizers are trivial and faithfull if it has trivial kernel.

Finally, ΣX and AX will denote, respectively, the symmetric group and an alternating
group of a set X and we will use σ indistinctly for the permutation σ ∈ Σn and the linear

map (x1, . . . ,xn) 7→
(
xσ(1), . . . ,xσ(n)

)
of Rn.
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2 Symmetries and polytopes/polyhedra

As any kind of object in mathematics subjected to some structure, it is natural to consider

the symmetries that preserves the structure of polytopes. However, our usual “schizophre-

nia” in discrete geometry makes us to distinguish between the symmetries that preserve

the geometric structure (formally, affine structure) and the ones that preserve the combi-

natorial structure (formally, face lattice) of the polytope.

Definition 2.1. Let Q be a polyhedron, then

g) a geometric automorphism of Q is an affine map f : Q→ Q such that f (Q) = Q,

c) a combinatorial automorphism of Q is a poset-automorphism of L (Q).

The group of geometric automorphism of Q will be denoted by Autg(Q) and the group of

combinatorial automorphism by Autc(Q).

The following polygon (drawn with [IGI15])

have not the same combinatorial and affine automorphisms due to that affine intersection

O not detected by the combinatorics. Therefore there is in general a difference between

considering geometric and combinatorial automorphisms.

We recall/state without proof the following obvious facts:

• Autg(P) acts faithfully on L (P) via gF = g(F)..

• The above action restrict to a faithful action on V (P).
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• For any affine isomorphism of polytopes f : P→ Q, f (bc(P))bc(Q). In particular,

every geometric automorphism fix the barycenter.

• Autg(P) acts faithfully on the set of fundamental non-negative maps of P centered

at the barycenter Fbc(P)(P) via f g = f ◦g.

3 Symmetric extensions of polytopes

Following the fundamental ideas of Yannakakis [Yan91] and their deepening by Kaibel,

Pashkovich and Theis [KPT12], we will define and develop the concepts of symmetric

extensions, sectional system (the first tool to prove lower bounds), the Yannakakis’ action

(the second tool) and the Yannakakis’ method to prove lower bounds.

An extension of a polytope is a polyhedron that projects onto it, but this extension

may not preserve the symmetries of this polytope. In order to take into account the lifting

of symmetries, the concept of symmetric extension is necessary.

Definition 3.1. Let P be a polytope and G a subgroup of Autg(P), a G-symmetric exten-
sion of P is an affine projection of polyhedra

π : Q→ P

such that for all g ∈ G, there is some χg ∈ Autg(P) such that

π ◦χg = g◦π .

In this context, the size of π : Q→ P, size(π : Q→ P), will be the number of facets of Q, a

lift of g ∈ G will be an element χ ∈ Autg(Q) satisfying π ◦χ = g◦π and we will say that

π : Q→ P is bounded if Q is a polytope.

Here, the G-symmetric extension complexity of P is the minimum size among all

G-symmetric extensions of P, i.e., the number given given by

xcG(P) := min{size(π : Q→ P) |π : Q→ P is a G-symmetric extension of P}.

Note that when G is the trivial subgroup, this reduces to the usual definition of

extensions of polytopes. Also, note that the lifting of elements of G is element by element

so it is not necessarily well-behaved; in particular, this means that in general we do not

have a group homomorphism from G into Autg(Q), but from a subgroup of Autg(Q) onto

G1.
1This is radically different from definition 2.10 of [GPT13] which a priori will enclosed only a subclass

of the cases that permits our definition. So we must ask: are these two definitions essentially different?
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Recall that the question2 that we will answer here for regular polygons and per-

mutahedra –in this second case up to constant– is:

Let P be a polytope and G a subgroup of Autg(P), what is xcG(P)?

Here, note that the known projection for the standard simplex ∆→ P give G-

symmetric extensions of P for every subgroup G of Autg(P) and that a extension is sym-

metric or not depending on the group we are working with as shown by the following

extension of a regular octogon P (“stolen” from [FRT12, Figure 1])

which is H-symmetric for H is the subgroup generated by the orthogonal reflections along

the horizontal and vertical axis, but not with respect its full geometric automorphism

group.

3.1 Sectional system of a section

As extensions are no more than projections for polytopes, it is natural to introduce the

concept of section for these. As the usual definition of section as a right inverse would be

too restrictive, we define sections of vertices.

Definition 3.2. Let P be a polytope and π : Q→ P an extension, a section of π : Q→ P

is a map

s : V (P)→ Q

such that π ◦ s = idV (P).

Using Farkas lemma II and III [Zie07, p. 41-42], one proves the following proposi-

tion which will be the first tool for for proving inexistence results of certain size extensions

by reductio ad absurdum.

2A question in the reverse direction which could be interesting is the following one: can there be arbi-

trarily large asymmetric extension of a polytope? Or more concretely: given a polytope P and a subgroup

G of Autg(P), are there arbitrarily large extensions of P that are not G-symmetric?
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Proposition 3.1 (Sectional system). Let P be a polytope, π : Q→ P an extension and

q ∈ relint(Q), then for all sections s : V (P)→ Q of π : Q→ P and slack variables of P

g : aff(P)→ R, the system
∑

v∈V (P)
λv( f ◦ s)(v)≥ 0

(
f ∈ Fq(Q)

)
∑

v∈V (P)
λvg(v)< 0

(S≥)

(S<)

has no solution λ ∈ RV (P) such that ∑v∈V (P)λv ≥ 0.

For now on, we will refer to the above system of inequalities as the sectional
system of a section.

3.2 Yannakakis’ action of a symmetric section

Before starting, we note that (by using quotients of affine spaces to quotient out the re-

cession cone) without loss of generality we can assume that every symmetric extension is

bounded. So this hypothesis does not limit the results in this subsection.

Lemma 3.2 (Bounding lemma). Let P be a polytope and G a subgroup of Autg(P). If P

has a a G-symmetric extension of size t, then P has a bounded G-symmetric extension of

size ≤ t.

In the first place, let’s introduce the adequate concept of section for a symmetric

extension: symmetric sections.

Definition 3.3. Let P be a polytope, G a subgroup of Autg(P) and π : Q → P a G-

symmetric extension, a symmetric section of π : Q→ P is a section s : V (P)→ Q such

that for all g ∈ G and every lift of it χg ∈ Autg(Q),

χg ◦ s = s◦g.

It is not clear that symmetric sections must exist (and they don’t if we have a

symmetric extension π : Q→P with Q not pointed). However, after our initial restrictions,

they do.

Lemma 3.3. Let P be a polytope, G a subgroup of Autg(P) and π : Q→ P a bounded

G-symmetric extension of P, then there exist a symmetric section s : V (P)→ Q.

Proof. Take

s : V (P)→ Q

v→ bc(π−1(v))
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Then the invariance of the barycenter with respect affine isomorphism together with the

action of G on the set of fibers of π : Q→ P, {π−1(v)∩Q |v∈V (P)}, given by gπ−1(v) =

π−1(gv).

In the second and last place, we will construct what we will call the Yannakakis’
action of a symmetric section.

Theorem 3.4 (Yannakakis’ action). Let P be a polytope, G a subgroup of Autg(P), π :

Q→ P a bounded G-symmetric extension of P and s : V (P)→ Q a symmetric section of

it, then G acts on the set

{ f ◦ s | f ∈ Fbc(Q)(Q)}

via ( f ◦ s)g = ( f ◦ s)◦g.

Proof. The only not so trivial part is that this is a well-defined action, but, due to the fact

that s is a symmetric section, for every g ∈ G and lift χg ∈ Autg(Q),

( f ◦ s)g = ( f ◦ s)◦g = ( f ◦χg)◦ s

is an element in the considered set since f ◦χg ∈ Fbc(Q)(Q).

It is important to note that all the statements presented here can be generalized

easily to a more general setting of “symmetric extensions of objects”, i.e., the ideas used

here are group theoretical in essence.

3.3 Yannakakis’ method for lower bounds

Once our two tools have been developed, it is time of developing the Yannakakis’ method

for establishing lower bounds for the symmetric extension complexity of polytopes. Sup-

pose that we have a polytope P with G a (non-trivial) subgroup of Autg(P) and that we

want to prove that

xcG(P)≥ t.

In order to show this, we argue by reductio ad absurdum. If this were false, by the bound-

ing lemma (3.2), there would exist a bounded G-symmetric extension π : Q→ P of size

< t. Here, we consider the symmetric section

s : V (P)→ Q,

guaranteed to exist by lemma 3.3, and the sectional system associated to it (given by

inequalities (S≥) and (S<)). Here, using the Yannakakis’ action of G we can gather the
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terms of this sectional system. More concretely, fix f ∈ Fbc(Q)(Q) and suppose that the

orbit decomposition of V (P) with respect G is given by

V (P) = OrbG(v1)∪·· ·∪OrbG(vα)

and that the orbit decomposition of each orbit OrbG(vi) with respect StabG( f ◦ s) is given

by

OrbG(vi) = OrbStabG( f◦s)(v
f
i,1)∪·· ·∪OrbStabG( f◦s)(v

f
i,βi, f

),

then we can rewrite the inequality (S≥) as

α

∑
i=1

βi, f

∑
j=1

( f ◦ s)(v f
i, j)

 ∑
w∈OrbStabG( f◦s)(v

f
i, j)

λw


≥ 0.

This gathering of terms, it becomes easier to argue since we have reduce the number of

unknown coefficients ( f ◦ s)(v f
i, j) that we cannot control in the inequality.

In brief and as conclusion of the previous digression, the Yannakakis’ method
for lower bounds consists in using the Yannakakis’ action to gather the terms in the

inequalities (S≥) in order to reduce the unknown coefficients that we cannot control using

the information about how G acts on V (P) and how the StabG( f ◦ s) look like3.

4 Lower bounds for the symmetric extension complexity

of regular polygons

In this section, we will apply the Yannakakis’ method in order to obtain lower bounds of

regular polygons. Furthermore, we will contrast this results in lower bounds for symmetric

extensions with the extension complexity of these polytopes in order to show that sym-

metry requirements can really affect the size of it. In other words, paraphrasing Kaibel,

Pashkovich and Theis in [KPT12], symmetry matters!

Up to translation, rotation and dilation, every regular polygon of n vertices is of

the form

P2(n) := conv
{(

cos
(

2π

n
k
)
,sin

(
2π

n
k
))
|0≤ k < n

}
.

It is a common fact that

Autg(P2(n))∼= D2·n

3As we will see with the permutahedron (and in general in any case with a complicated group G), this

question can be hard because a priori the only thing that we will know is that these subgroups have index

bounded by the size of the hypothetical extension.
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where D2·n is the dihedral group of order 2 · n formed by the n rotations and the n

orthogonal reflections with respect axis of symmetries. Here, Cn will denote the cyclic

normal subgroups of rotations and R the generator given by the rotation by 2π

n radians in

the positive sense. It is important to note that Cn acts in a free and transitive way on the

set of vertices of P2(n), so every vertex can be written uniquely as Rke1 with 0≤ k < n.

If symmetry restrictions are dropped from the extension of a regular polygon, we

can see using reflections [FRT12] that

xc(P2(n)) = Θ(logn).

In contrast to this minimality result for extensions of regular polygons, we have that in

the symmetric case the situation is as bad (or good) as it can be as shown by the following

theorem4.

Theorem 4.1 (Symmetric extension complexity of regular polygons). For every n,

xcCn(P2(n)) = n.

Proof. Suppose that the statement is false and let π : Q→P2(n) be a bounded Cn-symmetric

extension of size < n and s : V (P)→ Q its symmetric extension. Then for every f ∈
Fbc(Q)(Q),

StabCn( f ◦ s) =Cd f := 〈Rd f 〉

for some d f > 1 divisor of n (just apply the structure theorem of cyclic groups together

with the fact that the orbit of f has |Cn : StabCn( f ◦ s)| < n elements) and so, via Yan-

nakakis’s method, (S≥) is rewritten as

d f−1

∑
a=0

 ∑
x≡a (mod d f )

0≤x<n

λRxe1

( f ◦ s)Ra
(e1)≥ 0

for all proper divisor d of n and non-negative integer a < d.

Here, considering the slack variable for P2(n)

g : R2→ R

(x,y) 7→ 1− x

and taking

λRxe1 = 1−g(Rxe1) = cos
(

2π

n
x
)

4And only original result in this text!
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gives a solution to the system of inequalities of the sectional system thanks to the fact that

N−1

∑
x=0

cos
(

α +
2π

N
x
)
= 0

for all α ∈R and N ∈N as a consequence of being the barycenter of any regular polygon

centered at the origin 0. Hence, by reductio ad absurdum, P2(n) has no Cn-symmetric

extension of size < n and so xcCn(P2(n)) = n as desired.
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